Development and impact of drifting wave sensors Wave Measurement Workshop - 2022

Pieter Smit, PhD Isabel Houghton, PhD Christie Hegermiller, PhD Galen Egan, PhD Steve Penny, PhD

Wave Height (m)

Q

Sofar Ocean San Francisco, CA USA www.sofarocean.com

Agenda

Spotter 3 Sensing Platform

Example of agile deployment and proxy sensing during lan.

Sensing Network

Deployment and current state of our global sensing network

Modelling

Improved wave forecasting using wave observations

Agenda

Spotter 3 Sensing Platform

Example of agile deployment and proxy sensing during lan.

Sensing Network

Deployment and current state of our global sensing network

Modelling

Improved wave forecasting using wave observation

Sensing platform Spotter 3

Sensors

SST, Barometer, GPS, microphone

Direct observations

Waves, SST, Sea surface pressure

Proxy observations

Wind stress, surface currents, precipitation (in development)

Communication

2-way, real-time communication via Iridium and Cellular, over the air updates.

> **Connectivity** Smart-mooring and Bristlemouth

> > Agile Easy to deploy

Durability improvements mooring

New construction, new materials, and rigorous quality testing process for fatigue and strain failures.

System hardening

Internal hardening of electronics allows for agile deployment strategies

SPOTTER NOPP Hurricane Coastal Impact https://nopphurricane.sofarocean.com/

RAPID RESPONSE NETWORKS

Hurricane Ian

Proxy observation of wind speed during lan

Air-sea momentum flux

Spectral observations provide information about air-sea interactions

Equilibrium range

Over the equilibrium range of the spectrum spectral levels are well parametrized by roughness velocity

Proxy observation of stress

Observing spectrum allows for estimation of (wave supported) stress and wind speeds.

Noisy in practice

Where is the equilibrium range?.

Proxy observations

Proxy observation of wind speed during lan

Identification of range is tricky. Observations are noisy

Sensing Platform

Example of agile deployment and proxy sensing during lan.

Sensing Network

Deployment and current state of our global sensing network

Modelling

Improved wave forecasting using wave observation

Agenda

WISE 2022

Global coverage by Sofar Spotter network

Scalable hardware, network of deployment partners and ships of opportunity, and buoy longevity allow for persistent distributed sensing of global ocean conditions.

Applications of the Sofar Spotter network

navigation

Buoy information is actively used to inform mariners of inclement weather.

science

Access to our global network is freely available for academic users. https://www.sofarocean.com/products/data-services

Forecasting

Network is used in global operational forecasts.

Sensing Platform

Example of agile deployment and proxy sensing during lan.

Sensing Network

Deployment and current state of our global sensing network

Modelling

Improved wave forecasting using wave observation

Agenda

Wave Data Assimilation

No operational wave data assimilation of insitu sensors .

Wave Data Assimilation restricted to remote sensing of bulk parameters.

Buoy networks potentially provide much richer data.

Data assimilation with a wave model

Updated wave height =

Analysis field

Model prediction + Model background

Model differences from observations Weighted model error at observation location

Houghton *et al*, 2022. https://doi.org/10.1002/essoar.10511124.1

Assimilation method for **significant wave height** observations

OI often applied to significant wave height

Model state (spectrum) updated with a constant scaling

Houghton et al, 2022 https://doi.org/10.1002/essoar.10511124.1 WISE 2022

Assimilation method for **spectral** observations

Spectral DA

OI applied directly to moments (per frequency)

Directional moments

$$e(f; \boldsymbol{x}) = \int E(f, \theta; \boldsymbol{x}) \, \mathrm{d}\theta$$

$$a_1(f; \boldsymbol{x}) = \int \cos(\theta) D(f, \theta; \boldsymbol{x}) \, \mathrm{d}\theta$$

$$b_1(f; \boldsymbol{x}) = \int \sin(\theta) D(f, \theta; \boldsymbol{x}) \, \mathrm{d}\theta$$

$$a_2(f; \boldsymbol{x}) = \int \cos(2\theta) D(f, \theta; \boldsymbol{x}) \, \mathrm{d}\theta$$

$$b_2(f; \boldsymbol{x}) = \int \sin(2\theta) D(f, \theta; \boldsymbol{x}) \, \mathrm{d}\theta$$

Houghton et al, 2022 (under review).

https://doi.org/10.1002/essoar.10511124.1

WISE 2022

Assimilation method for spectral observations

Spectral DA

OI applied directly to moments (per frequency)

Directional moments

$$e(f; \boldsymbol{x}) = \int E(f, \theta; \boldsymbol{x}) \, d\theta$$

$$a_1(f; \boldsymbol{x}) = \int \cos(\theta) D(f, \theta; \boldsymbol{x}) \, d\theta$$

$$b_1(f; \boldsymbol{x}) = \int \sin(\theta) D(f, \theta; \boldsymbol{x}) \, d\theta$$

$$a_2(f; \boldsymbol{x}) = \int \cos(2\theta) D(f, \theta; \boldsymbol{x}) \, d\theta$$

$$b_2(f; \boldsymbol{x}) = \int \sin(2\theta) D(f, \theta; \boldsymbol{x}) \, d\theta$$

Houghton et al, 2022 (under review).

https://doi.org/10.1002/essoar.10511124.1

Model state (spectrum) updated through reconstruction

D - directional distribution*m* - directional moments*M* - directional moments matrix

Example from Ian

Spotter

WEATHER

Forecast skill improvement

Month-long re-forecast experiment. Skill (RMS) evaluated at all Spotter locations vs. forecast hour.

Houghton et al. 2022, Geoph. Res. Letters, doi.org/10.1029/2022GL098973

Results: Global forecasting from DA analysis

WISE 2022

Observations are complementary!

Work in progress

Local ensemble transform kalman filter DA

Ensemble based system is expected to improve swell >3 day lead, and is the stepping stone to coupled DA.

Sensing Platform

Nimble buoys allow for agile deployments e.g. to capture extreme events.

Sensing Network

Large scale sensing networks of directional wave buoys are now feasible.

Modelling

Rich spectral data from buoys meaningfully improves wave forecasts.

OUR MISSION

ŞĴ

Connecting the world's oceans to power a more sustainable future.

Thank You!

QUESTIONS?

Pieter Smit Head of Ocean Research

pieter.smit@sofarocean.com www.sofarocean.com

Access our global Spotter sensor weather network:

weather.sofarocean.com