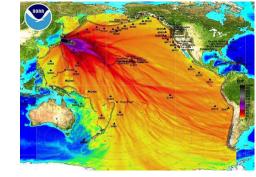
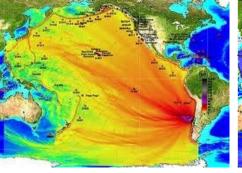
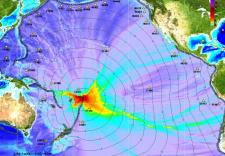
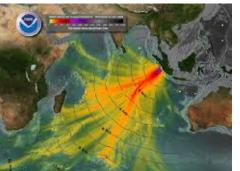
50 centimeters of tsunami

METHODOLOGY

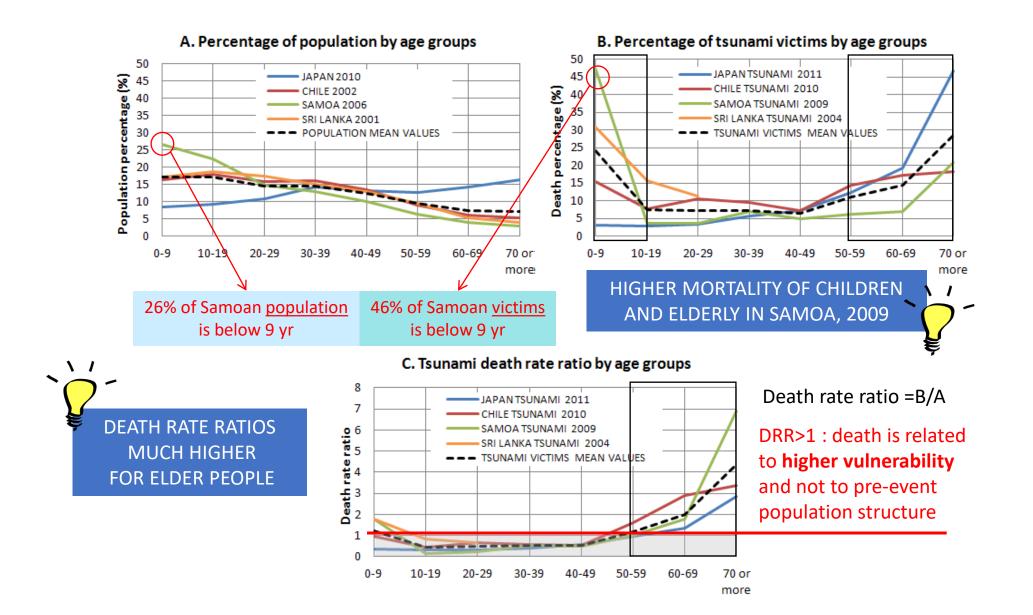

Comparison of tsunami impacts

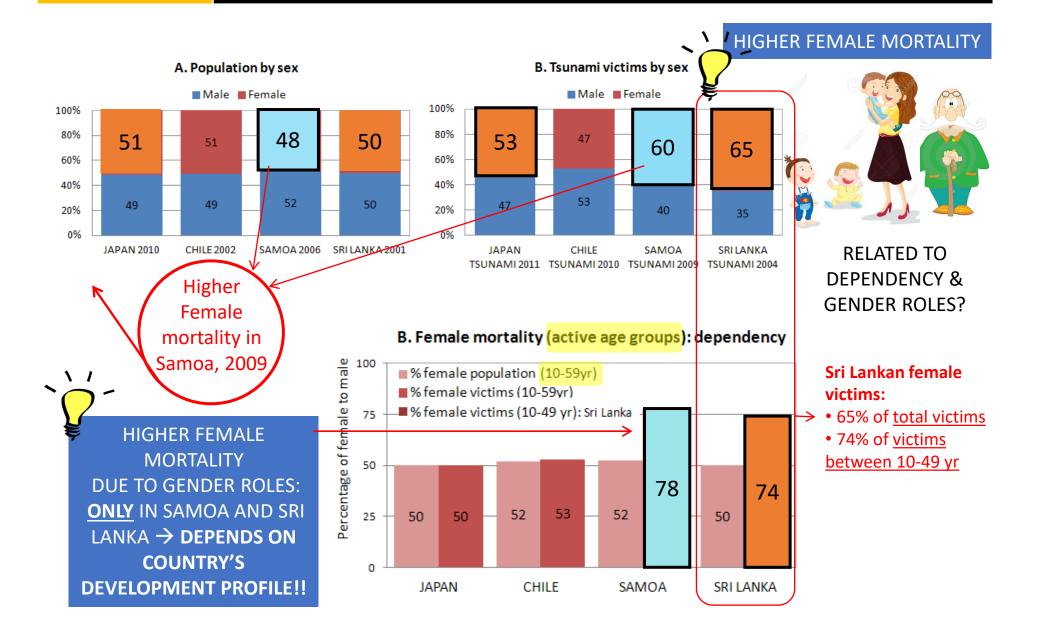

2011 GREAT TOHOKU TSUNAMI, JAPAN


2010 TSUNAMI CHILE


2009 TSUNAMI **S**AMOA

2004 Indian Ocean Tsunami (Sri Lanka, Thailand)





	2011 Great Tōhoku Tsunami	2010 Chilean Tsunami	2009 Samoan Tsunami	2004 Indian Ocean Tsunami
Date	11/03/2011 (Friday)	27/02/2010 (Saturday)	29/09/2009 (Tuesday)	26/12/2004 (<mark>Sunday</mark>)
EQ magnitude	9.0 Mw	8.8 Mw	8.1 Mw	9.1 Mw
EQ LT	14:46:24 JST	03:34:11 CLT	06:48:10 WST	06:28:53 IST (SL); 08:28:53 ICT (TH)
TS arrival time (after EQ)	20 min.	30 min.	15-20 min.	2h (SL); 1h (TH)
EWS (local warning issued)	Yes	No	Yes (not enough time)	No
TS max wave height (tide gauges)	7.3 m (Soma, Fukushima)	2.61 m (Valparaíso)	2.5 m (Pago Pago)	SL: 3.87 m (Colombo) TH: 4.70 m (Ta Phao Noi)
TS max inundation depth (surveys)	10-15 m (Sanriku)	2.30 m (Constitución)	Above 5 m	SL: <mark>above 10 m</mark> (Ampara) TH: 6 m (Ban Thale Nok)
TS max run-up (a.s.l.)	55.88 m (Iwate) 38.56 m (Miyagi),	29 m (Constitución)	14.45 m (Lepa, Upolu Island)	SL: 12.50 m (Yala) TH: 19.60m (Ban Thung Dap)
TS max distance travelled inland	<mark>7 900 m</mark> (Iwate) 4 951 m (Miyagi),	1 032 m (Playa Purema)	440 m (Salani, Upolu Island)	SL: <mark>500m</mark> (Koggala and Kalkudah) TH: 939 m (Hat Praphat)
Fatalities	15 884 (T: 15817)	156	140	SL: 13 391; TH: 5 395
Missing	2 633 (T: 2629)	25	4	SL: 799; TH: N/A
Total casualties	18 517 (T: 18446)	181	144	SL: 14 190; TH: 5395

RESULTS

Gender vulnerability

□ AGE: children and elderly are the most vulnerable.

- Elderly: much higher death rate ratios, compared to the demographics
- Mortality paterns depend on population pyramids (country development profile) and is
- exacerbated by the vulnerability of elders and childrens

GENDER: female mortality not always related to gender roles.

Gender roles identified in developing/undeveloped countries (Samoa, Sri Lanka)

Japan female mortality due to female longevity.

Nat. Hazards Earth Syst. Sci., 15, 1493–1514, 2015 www.nat-hazards-earth-syst-sci.net/15/1493/2015/ doi:10.5194/nhess-15-1493-2015 © Author(s) 2015. CC Attribution 3.0 License. Natural Hazards and Earth System Sciences

A contribution to the selection of tsunami human vulnerability indicators: conclusions from tsunami impacts in Sri Lanka and Thailand (2004), Samoa (2009), Chile (2010) and Japan (2011)

P. González-Riancho¹, B. Aliaga², S. Hettiarachchi³, M. González¹, and R. Medina¹

¹Environmental Hydraulics Institute "IH Cantabria", Universidad de Cantabria, C/Isabel Torres no 15, Parque Científico y Tecnológico de Cantabria, 39011 Santander, Spain ²Intergovernmental Oceanographic Commission of UNESCO, 7 Place de Fontenoy, 75732 Paris CEDEX 07, France ³Department of Civil Engineering, University of Moratuwa, 10 Simon Abeywickrama Avenue, Mount Lavinia, 10370, Sri Lanka

Correspondence to: P. González-Riancho (grianchop@unican.es)

Received: 11 September 2014 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 16 December 2014 Revised: 01 June 2015 – Accepted: 03 June 2015 – Published: 03 July 2015

TAKE HOME MESSAGE:

FOR SIDS, ELDERS AND CHILDRENS UNDER AGE 9 YEAR, AND WOMEN, ARE IN EXCESS THREATENED BY TSUNAMIS

→ SIDS HUMAN VULNERABILITY INDICATORS FOR (TSUNAMIS) SHOULD INCLUDE AGE AND GENDER CONSIDERATIONS Standard Operating Procedures (SOP) Planning and Implementation for Tsunami Response

Jointly organized by IOC-UNESCO and EC-JRC

5-6 October 2022, EC-JRC Ispra-Italy

SOP Development – CARIBE EWS experience

unesco

Intergovernmental Oceanographic Commission

> B. Aliaga IOC Tsunami Unit

THANK YOU FOR ATTENTION! QUESTIONS? COMMENTS?

