

Seismic Arrays: Insight into Source Characteristics and Disaster Mitigation

Dun Wang, Nozomu Takeuchi, Jim Mori, Wenkai Chen, Qiang Yao, Chuang Chen

> China University of Geosciences@ Wuhan Institute of Seismology, Lanzhou, CEA Kyoto University The University of Tokyo

> > Online, 9 December, 2021

Booming of seismic observations

M > 8 earthquakes since 1973 (USGS)

Imaging source process of large earthquakes using seismic data recorded at dense arrays

Figure 3 | **Rupture trace of the Sumatra earthquake.** Maxima of energy maps are shown in their spatiotemporal development by coloured circles. The width of the circles scales linearly with seismic energy; colour coding is proportional to the time since rupture initiation in the source region. Major tectonic lines are shown in red. Numbers 1 and 2 indicate the position of two major seismic energy releases.

(Kruger and Ohrnberger, 2005, Nature)

Back-projection

• Search a grid of points to determine the best location for the source of seismic radiation in each designated time window of interested waves.

Two Back-projections

Standard back-projection

Sliding window beampacking

(Beamforming)

Determining magnitude of large earthquakes

> Rapidly and accurately determining magnitude of large earthquakes remains challenges

Hayes et al., 2011, SRL

Huge unexpected tsunami reachec the Japan coast 25min after the earthquake

The importance of accurate magnitude for tsunami warning

(With Tung-Cheng Ho, Kyoto University)

Limitations of conventional methods

> M_L , M_S , M_{WP} , M_{JMA} Saturate for large earthquakes

Sepetember 8, 2018 Mw 8.2 Mexico earthquake

~10 min Mww 8.92

~1 h Mww 8.36

Pérez-Campos et al., 2020, SRL Pérez-Campos et al., 2021, SSA meeting

A new magnitude scale (Hara, 2007; 2011; Wang et al., 2017)

 $M = \alpha \log A + \beta \log \Delta + \gamma \log t + \delta$

Wang et al., 2017

*M*_{dt}: P-wave Maximum Displacement & Source Duration

Far-filed Displacement \rightarrow **Seismic Moment**

$$\mathbf{u}(\mathbf{x},t) = \underbrace{\frac{1}{4\pi\rho\alpha^{3}}\mathbf{A}^{FP}\frac{1}{r}\dot{M}_{0}\left(t-\frac{r}{\alpha}\right)}_{P-\text{wave}} + \underbrace{\frac{1}{4\pi\rho\beta^{3}}\mathbf{A}^{FS}\frac{1}{r}\dot{M}_{0}\left(t-\frac{r}{\beta}\right)}_{S-\text{wave}}_{\text{displacement}}$$

- A^{FP} and A^{FS}: P- and S-wave radiation pattern correction terms
- ρ: rock density
- α and β: P- and S-wave velocity
- r: source-receiver distance
- M₀: moment rate function.

Far-filed Displacement \rightarrow **Seismic Moment**

$${\dot M_0}({
m max}) = 4 \pi
ho lpha^3 \cdot r \cdot u^p_{({
m max})}$$

Duration

 $(\dot{M}_0)_{max}$

Duration $M_0 = (4\pi p a^3 \cdot R \cdot A) \cdot D \cdot 1/2$

 $M_0 = (4\pi p a^3 \cdot R \cdot A) \cdot D$

In Mwp method:

ρ, rock density: 3.4E+03 kg/m³

α, P velocity: 7.9 km/s
m * s * km * 4 * 3.14 * (3.4 * 10³ kg/m³) * (7.9 km/s)³
4 * 3.14 * 3.4 * 10³ * 7.9³ * (kg * m/s²) * (km⁴/m³)
4 * 3.14 * 3.4 * 10³ * 7.9³ * 10¹²Nm
2.1 * 10¹⁹Nm

Far-filed Displacement \rightarrow **Seismic Moment**

2004-2021/03 M≥7 Earthquakes Worldwide (USGS)

P Max. Disp.: GSN 150+ Global & Uniform

Duration by BP: China Array Japan Hi-net Europe Array US Array

$$M = \alpha \log A + \beta \log \Delta + \gamma \log t + \delta$$

Fix $\alpha = \beta = Y = 0.67$

257 large earthquakes

5 seismic arrays(GSN, China array, Japan Hi-net, USarray, EUR array) ~ 450,000 waveforms

δ=	6.57
SD=	0.12

	10-40°,	40-85°,	10-85 °
$\alpha: 0.79 \pm 0.03,$	0.53,	0.51,	0.55
β: <mark>0.83</mark> ± 0.05,	0.44,	0.01,	0.67
$\gamma: 0.69 \pm 0.03,$	1.01,	1.05,	1.01
$\delta: 6.47 \pm 0.17,$	6.23,	7.89,	5.55
(Hara, 2007, 2008, 2011)	(Wang et al	., 2017; Son	g et al., 2019; Yao et al., 2019)

$$\mathbf{u}^{P} = \frac{1}{4\pi\rho\alpha^{3}} \mathbf{A}^{FP} \frac{1}{r} \dot{M}_{0} \left(t - \frac{r}{\alpha}\right)$$

$$M_{0} = \int_{0}^{T} \dot{M}_{0} = 4\pi\rho\alpha^{3}r \frac{1}{\mathbf{A}^{FP}} \int_{0}^{T} u^{P}$$

$$Mwp$$

$$Mup$$

$$Mup$$

$$M_{0} = \int_{0}^{T} \dot{M}_{0} = 4\pi\rho\alpha^{3}r \frac{1}{\mathbf{A}^{FP}} Max \left(\int_{0}^{T} |u^{P}|\right)$$

$$M_{0} = \left(4\pi pa^{3} \cdot R \cdot A\right) \cdot D \cdot k$$

$$M_{t} = 0.67 * logA + 0.67 * logB + 0.67 * logD + \delta$$

$$M_{t} = 0.67 * logA + 0.67 * logB + 0.67 * logD + \delta$$

$$Rectangle$$

$$\delta = 6.61$$

$$\delta = 6.81$$

Regression Calculations: δ =6.57

$$M = \alpha \log A + \beta \log \Delta + \gamma \log t + \delta$$

Fix $\alpha = \beta = Y = 0.67$ Fitting $\delta = 6.57$

Shape of moment rate function

✓ Skewed normal distribution: $6.61 < \delta < 6.81$

Source duration

Comparisons of Large Seismic Arrays

Determining the magnitude of the M9 Tohoku earthquake

Determining the magnitude of the Mw 8.2 Mexico earthquake

40 60 80 100

The 12, April, 2012 M_W 7 earthquakes (M6 Earthquake, 9 min before)

Rupture fault qualifies damage areas

Seismic intensity map by field survey (CEA)

Estimating seismic intensities

Conventional methods

Limited real-time observations

Measuring ground motions

Dense real-time observations

ShakeMap, USGS

Sparse observation+GMPEs+DYFI

affect the results

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	I	-	IV	V	VI	VII	VIII	IX	X+

ShakeMap of the 2008 Mw 7.9 Wenchuan earthquake

Production time: (Beijing Time)

Origin Time:

2008/05/12 14:28

2008/05/12 17:42

PERCEIVED	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL	I	IFIII	IV	v	VI	VII	VIII	IX	X+

2020/06/04 05:23

Scale based on Worden et al. (2012)						Versi	on 1: Processed 2	020-06-0	4T05:22:56
INTENSITY	- 1	11-111	IV	۷	VI	VII	VIII	DX	X +
PGV(cm/s)	<0.0215	0.135	1.41	4.65	9.64	20	41.4	85.8	>178
PGA(%g)	<0.0464	0.297	2.76	6.2	11.5	21.5	40.1	74.7	>139
DAMAGE	None	None	None	Very light	Light	Moderate	Moderate/heavy	Heavy	Very heavy
SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

△ Seismic Instrument ◇ Reported Intensity ★ Epice

The 12 May 2008 Mw 7.9 Wenchuan earthquake

Data: EUR, band-pass filtered 0.5-2.0 Hz

The 24 September 2013 Mw7.7 Pakistan earthquake

Data: Hi-net, band-pass filtered 0.5-2.0 Hz

(Wang et al., 2016)

Back-projection

GMPEs

Site corrections based on V_s30

The 12 May 2008Mw7.9 Wenchuan earthquake

Chen et al., under revision.

Seismic intensity maps PGA PGV

Sichuan Provinc

Gansu Province

Shanxi

Model 1

Intensity and locations of subevents

Model 2

locations of subevents Equal weight

Model 3

Shortest distance to the fault plane

Gansu Province

Gansu Province

Sichuan Provinc

Province

Shanxi Province

Gansu Province

Shanxi Province

Sichuan Province

Comparisons among seismic intensity maps of CEA, ShakeMap, and our result for the 2008 Wenchuan earthquake

CEA & ShakeMap

Our result & ShakeMap

蓝线: ShakeMap结果 (2020/06)

背景:我们方法得到的烈度分布

其中亮绿表示MMI III和IX度区

蓝线:调查得到的地震烈度 (CEA) 背景: ShakeMap结果 (2020/06)

The 2021 Mw 6.1 Yangbi, Yunnan, China earthquake

Accurate local Vs30 is important

The 22 May 2021 Mw7.3 Madoi, China earthquake

4 h after the O.T.

The 14 August 2021 Mw 7.3 Haiti earthquake

海地M7.3级地震烈度初步评估图V1.0

Time efficiency

Travel time+Source duration +Data delay+ processing time

M9 3-9 min M8 30s - 2 min M7 ~10s

< 1 min + < 1 min

Distance (Deg.)	10	30	50	90
Distance (km)	1111.2	3335.7	5556	10000.8
Travel time (min)	2-3	6	9	13

Applying this system with three regional dense arrays that are located at Eurasia, China, Japan, and America, would help better earthquake emergency response and tsunami warning for global earthquakes.

Thank you!

M ≥ 7.5, Depth ≤ 60 km, USGS catalog (1970-2014)

Moment tensor inversion → **Seismic moment**

$$\mathbf{M} = \begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}$$
$$M_0 = \frac{1}{\sqrt{2}} \left(\sum_{ij} M_{ij}^2 \right)^{1/2}.$$

 M_{WW} , W-phase, USGS, PTWC M_{WC} , body- and surface-waves, GCMT

Moment Magnitude & Seismic Moment

□**Shear module:** 3-6*10⁴ MPa for crust-upper mantle

Stress drop: 2-6 MPa for large earthquakes.

$$\log E = \log M_0 + \log rac{\Delta\sigma}{2\mu} = \log M_0 - 4.3$$

 $\lg E = 1.5M_s + 4.8$ Gutenberg & Richter, 1956

$${
m M_w} = (\log {
m M_0} - 4.3 - 4.8)/1.5 = (\log {
m M_0} - 9.1)/1.5$$

Kanamori (1977) and Hanks & Kanamori (1979)

Stein & Wysession, 2003