ࡱ> '` bjbjLULU ..?.?. . . . . . . B ڡLB z2`m lw$h". ummuu. . ooou . . ouoo. . @& J n0 , Y @@> . ~/-l o$ ///Y/// uuuuB &&Xu$*B &&uB B B . . . . . .   The WCRP / JCOMM Workshop on Coordinated Global Wave Climate Projections. 11-13 April, 2011 Venue: Hall B, WMO Secretariat Building, Geneva, Switzerland. Meeting Abstracts: 10-April-2011 List of Authors, Affiliation and Abstract Title:  HYPERLINK \l "_Analysis_of_wave" Ardhuin et al. (IFREMER, France). Analysis of wave climate, observations and models  HYPERLINK \l "_Present_and_future" Bidlot (ECMWF, UK) Present and future global wave data sets from ECMWF re-analyses and their relevance for climate studies.  HYPERLINK \l "_Climate_driven_change" Bocquet and Howard (MetOffice, UK) Climate driven change in waves in the North Atlantic and around the UK - cancelled  HYPERLINK \l "_Wave_climate_and" Breivik (Norwegian Meteorological Institute). Wave climate and direct computation of wave extremes estimated from 10 years of EPS prognoses  HYPERLINK \l "_A_hybrid_system" Camus et al. (IH Cantabria, Spain). A hybrid system to downscale wave climate to coastal areas  HYPERLINK \l "_Wave_climate_projections" Casas-Prat and Sierra (Universitat Politecnica de Catalunya, Spain). Wave climate projections in the NW Mediterranean (Student Talk)  HYPERLINK \l "_Dynamical_downscaling_of" Charles et al. (BRGM, France). Present and future wave climate analysis along the French mainland Atlantic coast, using wave dynamical downscaling.  HYPERLINK \l "_Dynamical_downscaling_of" Debenard and Roed. (Norwegian Meteorological Institute. Dynamical downscaling of regional wave climate in the northern North Atlantic; results and challenges.  HYPERLINK \l "_Simulated_wave_climatology" Fan et al. (NOAA/GFDL, USA). Simulated wave climatology during the past 30-years and wave climate projection in the late 21st century  HYPERLINK \l "_Two-way_Coupling_between" Fox-Kemper et al. (University of Colorado, Boulder) Two-way Coupling between Surface Gravity Waves and Climate  HYPERLINK \l "_A_strategy_for" Gavrikov et al. (IORAS, Moscow). A strategy for the regional projections of wind waves using winds from climate model simulation refined with high resolution non-hydrostatic atmospheric model - cancelled  HYPERLINK \l "_North_Sea_wave" Grabemann et al. (Helmholtz-Zentrum, Geestacht, Germany). North Sea wave climate projections for anthropogenic future climate change: an ensemble study  HYPERLINK \l "_130_years_of" Gulev and Grigorieva (IORAS, Moscow). 130 years of visual wind wave observations from VOS (1880-2009): observed climate variability in mean and extreme wave characteristics - cancelled  HYPERLINK \l "_Coordinated_global_wave" Hemer et al. (CSIRO, Australia) Coordinated Global Wave Climate Projections  HYPERLINK \l "_Projected_future_wave" Hemer et al. (CSIRO, Australia) Projected future wave climate along Australias eastern margin.  HYPERLINK \l "_Statistical_downscaling_of" Izaguirre et al. (IH Cantabria, Spain) Statistical downscaling of extreme wave climate  HYPERLINK \l "_Sung_Hyup_You" Kang et al (KMA, Republic of Korea) Numerical study of wind wave climatology over the Northwestern Pacific Ocean using Operational Ocean Forecasting System in KMA  HYPERLINK \l "_Regional_wave_climate" Lionello, P. (U. Salento, Italy). Regional wave climate projection studies in the Mediterranean Sea  HYPERLINK \l "_Dynamic_Projection_of" Mori et al. (Kyoto University, Japan) Dynamic Projection of Future Wave Climate Change in Global Scale  HYPERLINK \l "_On_the_relevance" OCampo-Torres et al. (CICESE, Mexico). On the relevance of time and spatial variability of long term wave hindcast on energy resources evaluation and its potential implications onto wave climate projection uncertainties.  HYPERLINK \l "_Response_of_extreme" Perrie et al. (Bedford Insititute of Oceanography, Canada). Response of extreme waves to variations in regional North Atlantic climate - cancelled  HYPERLINK \l "_The_influence_of" Perrie et al. (Bedford Institute of Oceanography, Canada). The influence of atmosphere-ocean-wave coupling, wave drag and sea spray on ocean waves in midlatitude storms - cancelled  HYPERLINK \l "_Impact_of_a" Semedo et al. (Escola-Naval-CINA, Portugal & Uppsala University, Sweden) Impact of a Warmer Climate on the Global Wave Field: Preliminary Results  HYPERLINK \l "_Statistical_reconstruction_and" Wang et al. (Environment Canada). Statistical reconstruction and projection of ocean waves  HYPERLINK \l "_Regional_wave_climate_" Weisse et al. (Helmholtz-Zentrum Geestacht, Germany) Regional wave climate simulations at the Helmholtz-Zentrum Geestacht, Institute for Coastal Research  HYPERLINK \l "_The_wave_climate" Wolf and Bricheno (NOC, UK). The wave climate of the NW European Continental Shelf  Analysis of wave climate, observations and models Fabrice Ardhuin, Abel Balanche, Pierre Queffeulou and Eleonore Stutzmann IFREMER, France We examine the correlations and trends between seismic noise, satellite altimeter data and numerical wave models, over the past 20 to 30 years for the North Pacific and North Atlantic. The examination of seismic noise at the Berkeley seismic station (BKS) shows that it is highly correlatied and waves offshore central California and, after identifying particular events, can be used to reconstruct wave time series with high accuracy (r= 0.93 for daily mean Hs). Other seismic stations, in particular in western Europe are instead sensitive to waves over a very large area that covers a good part of the North Atlantic. This is investigated using the Finnish station of Kevo (KEV) and the Scottish station of Eskadelamuir (ESK). Based on modeled wave spectra using the WAVEWATCH III model, we estimate the mean spatial distribution of wave-related seismic sources for these two stations and verify that the daily mean noise level is well correlated with the area-averaged wave heights, as inferred from satellite altimeter data (r=0.86). These empirical relationships are then used to verified the trends in wave heights from various sub-regions of the North Atlantic. The seismic data is finally used to correct the time-dependent bias in the numerical wave model hindcasts based on the second NCEP-NCAR reanalysis. Present and future global wave data sets from ECMWF re-analyses and their relevance for climate studies. Jean-Raymond Bidlot European Centre for Medium-range Weather Forecasts Reading, UK Unlike the conventional records, reanalysis produces a complete global view of the climate, encompassing many essential climate variables in a physically consistent framework. This includes an active wave model component for the proper description of the momentum flux at the surface of the oceans. Global wave model data are thus produced and archived. The current reanalysis project from ECMWF ERA-Interim has now reached a major milestone after completing over 22 years of reanalysis from 1989 to end of 2010. It is now being extended forward in time to cover the period since 1979. This latest reanalysis follows from the experience of the previous reanalysis - ERA40. The wave data in ERA-Interim have benefitted considerably from improvements of the system with respect to ERA40. When completed, ERA-Interim will cover a period from 1979 to present time, allowing climate studies of the recent decades. The next big reanalysis effort ERA-CLIM has just started. ERA-CLIM will develop observational datasets suitable for global climate studies, with a focus on the past 100 years. These datasets will include atmospheric, oceanic, and terrestrial observations from a variety of sources, high-resolution global reanalysis products derived from the observations, and associated data quality information needed for climate applications. The project will use existing climate data records and make a substantial contribution to filling known gaps in these records. Proposed data recovery efforts will focus on upper-air observations made in the first half of the 20th century, as well as near-surface observations of wind and humidity, in all regions of the globe. Climate driven change in waves in the North Atlantic and around the UK Franois-Xavier Bocquet and Tom Howard Met Office, Fitzroy Road, Exeter, EX1 3PB, UK The many offshore marine structures and coastal defences sited around UK seas are designed with expected lifetimes of 10s to 100s of years and to withstand extreme events with long return periods. Despite recent advances in climate prediction, a majority of designs remain based on observed or reanalysis metocean datasets due to their known performance in capturing extreme cases. The capability to run high-resolution Regional Climate Models (RCMs) raises the possibility that atmospheric forcing fields can be generated which have the necessary detail and intensity to force representative high energy responses in the ocean system (surge and waves). A new project a the Met Office aims to test this capability by making direct comparisons of RCM forced wave model data with existing state of the art hindcast data. This project will use winds from an 11 member perturbed physics ensemble of global HadCM3 runs, under the A1B emissions scenario, and from a corresponding 12km RCM ensemble centered on the UK to force a set of wave climate runs. These will then be used to create an estimate of the future wave climate, using the WAVEWATCH III model, and the uncertainty associated with it. The first stage of the work is the validation of the wave model data obtained for the global domain runs by benchmarking it against data from ERA40/ERAI forced WW3 runs, which provide a suitable wave climatology. Preliminary validation statistics are presented here for the global model comparing the uncertainty plume from the PPE runs with the actual climate for the reanalysis period. The second stage will analyse the future climate projections for both the global and regional climate models. Wave climate and direct computation of wave extremes estimated from 10 years of EPS prognoses Oyvind Breivik. Norwegian Meteorological Institute. The ECMWF ensemble prediction system (EPS) has been running for more than 10 years, providing a unique source of wave climate information. A comparison with wave buoys in the North Sea and the North Atlantic reveals that the wave climate at +240 hours forecast time is as good or even better than at analysis time. The correlation is however very low, both between members and between model and observations. This allows us to handle the individual ensemble members as random draws from a climatology. The model ensemble is large enough (two model integrations per day and 51 ensemble members) to allow direct computation of wave height extremes as very small exceedance levels (or equivalently return values) can be estimated without resorting to the extrapolation methods traditionally required in extreme value analysis. We will present some preliminary results from the analysis of the EPS and assess their usefulness both for establishing the average wave climate and direct computation of wave height extremes. A hybrid system to downscale wave climate to coastal areas Paula Camus, Cristina Izaguirre, Inigo J. Losada, Fernando J. Mendez, Raul Medina Environmental Hydraulics Institute IH Cantabria, Universidad de Cantabria, Spain Wave climate projections using wave generation numerical models are adequate to improve the knowledge of large-scale (say 0.1 to 1 spatial resolution) future wave climates. However, coastal wave climate requires a more detailed spatial resolution (say, 100 m) in order to correctly evaluate different coastal processes. This specific problem of downscaling, enhancing the spatial resolution and defining in detail shallow water areas, is called wave propagation and usually requires numerical models that consider the wave propagation processes such as refraction, shoaling, diffraction and dissipation by wave breaking. In this work, a hybrid methodology to determine high-resolution wave climate in coastal areas, based on statistical and dynamical downscaling, is proposed. The statistical downscaling includes the use of classification (self-organizing maps) and selection algorithms (Max Diss Algorithm, MDA). The MDA selects a reduced number of multivariate sea states uniformly distributed over data, covering the edges, which results very convenient for a later interpolation. The dynamical downscaling is carried out using different nested state-of-the-art wave propagation models, increasing the spatial resolution near the coast. A multidimensional interpolation scheme based on radial basis functions is used to obtain quantitatively valid time series of wave climate at coastal areas, which are validated numerically and using instrumental data (for reanalysis data bases). Wave climate projections in the NW Mediterranean M. Casas-Prat and J.P. Sierra Universitata Politecnica de Catalunya, Spain Climate change has become an important issue in the coastal engineering field. The sea level rise is not the only concern but also variations in the wave climate can be expected due to changing wind patterns, affecting the littoral dynamics. In the European context, the ENSEMBLES project has provided the researching community with daily mean and maximum atmospheric fields (wind, pressure, etc.) at 25 km spatial scale for the continuous time period 1960-2050/2100 using the midline A1B greenhouse scenario. This database represents a useful tool for regional wave modelling of future scenarios. However, such a low time resolution considerably smoothes the resulting wave climate and several peak events are not properly caught. The present study aims to improve the present knowledge of the tendencies in the wave heights approaching the Catalan coast, situated in the NW Mediterranean sea, which nowadays already has a high percentage of the coast being eroded. For this purpose, two 20-year scenarios are computed: the reference situation (1991-2010) and the future scenario (2081-2100), with a spatial resolution of 1/8. The forcing input consists of 3-hourly wind fields obtained by Koninklijk Nederlands Meteorologisch Instituut, which used the Regional Circulation Model (RCM) RACMO2 and the Global Circulation Model (GCM) ECHAM5, and the A1B scenario. Therefore, this study correspond to a first attempt because it only considers one RCM-GCM combination instead of ensambling various climatic models. First results show a tendency of the significant wave height to decrease but a significant change in the annual pattern is obtained. In some areas, higher values are expected during spring and summer seasons, specially for the extreme regime. Present and future wave climate analysis along the French mainland Atlantic coast, using wave dynamical downscaling Elodie Charles, Dborah Idier, Rodrigo Pedreros, Gonri Le Cozannet, Jrme Thiebot, Fabrice Ardhuin, Serge Planton BRGM, Service RNSC, 3 av. C. Guillemin, BP 6009, 45060 Orlans cedex 2, France. e.charles@brgm.fr, d.idier@brgm.fr, r.pedreros@brgm.fr, g.lecozannet@brgm.fr Ifremer, Centre de Brest, 29280 Plouzan, France. fabrice.ardhuin@ifremer.fr Centre National de Recherches Mtorologiques, 42 av. G. Coriolis, 31057 Toulouse cedex 1, France. serge.planton@meteo.fr Change in ocean wave climate has many implications regarding offshore and coastal hazards. Therefore, knowledge of past and future wave conditions is essential. This study focuses on the Bay of Biscay and more particularly on the French mainland Atlantic coast, where datasets of wave conditions (buoys, modelling) do not provide sufficient long-term and high resolution information for studying past and future wave climate along the Aquitanian coast (France). A dynamical downscaling approach is then applied to convert available global wind fields into nearshore wave conditions. Waves are generated and propagated all over the North Atlantic Ocean (spatial resolution 0.5) to the Aquitanian coast (spatial resolution 1 km) using the WAVEWATCH III (NOAA/NCEP) model and the SWAN model. Forced by the ERA-40 reanalysis wind fields (1.125 grid, every 6 hours, from 1958 to 2001), this wave modelling system is calibrated and validated against eleven oceanic and coastal buoys measurements. Offshore and nearshore wave fields provided from 1958 to 2001 (generated by ERA-40 wind fields) are analysed in terms of multi-decadal trends and inter-annual variability. Concerning future wave climate, the RETIC simulations, performed by ARPEGE model, provide wind fields for a present control period and three emissions scenarios (A1B, A2 and B1). Potential future wave climates are modelled, using these wind fields with the above system. The comparison of the Bay of Biscay wave fields for different emissions scenarios and regarding the present wave climate will be used to evaluate the potential impact of the climate change on the French mainland Atlantic coast. Acknowledgements: AXA Research Fund for financial funding; ERA-40, CELM, CETMEF, CNRM for providing data; GENCI (Grand Equipement National de Calcul Intensif) for the access to the HPC resources of CINES under the allocation 2010-[c2010016403]; Pascale Delecluse, Michel Dqu and Alain Braun for their advice and help. Dynamical downscaling of regional wave climate in the northern North Atlantic; results and challenges. Jens Debernard and Lars Petter Red Norwegian Meteorological Institute, Norway We discuss possible changes in regional wave climate in the northern North Atlantic and adjacent seas found based on two dynamical downscaling studies using input from four different global models and 3 green house gas scenarios. In general, changes in significant wave height in this region are found to be mostly small and insignificant. However, there are some notable exceptions in certain regions. Moreover, there is a tendency for an increase in the most extreme wave events in the warmer period, compared with the present day control climate. An interesting finding is that, the differences between the resulting changes from the various global models, are larger than the resulting changes found from application of different greenhouse gas emission scenarios using the same global model. Furthermore, the studies show that even applying quite large atmospheric downscaling domains does not diminish the large differences in the present day regional wind climate between simulations driven with different global models. We conclude therefore that the change is due to the differences in the global driving climate. In addition, biases in the storm tracks and general circulation given by the global model strongly influence the regional control and scenario climate for the wave height and wave direction. Simulated wave climatology during the past 30-years and wave climate projection in the late 21st century Yalin Fan, Shian-Jiann Lin, and Isaac Held NOAA / GFDL Ocean surface wave climate change is one of the eight main climate drivers affecting the coast (Hemer, et al 2010). In recent years, several dynamic projections of regional wave climate have been carried out, where downscaled Atmosphere/Ocean Global Climate Model (GCM) projections are used to force regional wave models. But bias could arise in the simulated wave climate from the low level of confidence in the projected circulation changes from GCMs. The European Centre for Medium-Rage Weather Forecasts (ECMWF) ERA-40 reanalysis (T159) produced global wave information at 1.5 resolution. Even though it captures the variability of the true wave height very well on all time scales, due to the relatively coarse resolution of the atmospheric model and its limited ability to resolve storm systems, high wave heights were severely underestimated (Hemer, 2010). We have developed a high resolution global simulation system by coupling the operational wave model developed at the National Centers for Environmental Prediction/Environmental Modeling Center, to GFDLs prototype Global Cloud-Resolving Model (HiRAM). We have evaluated the performance of this coupled system through climate SST run at 0.5-degree resolution, which shows consistent results with the European center for Medium-Range Weather Forecast (ECMWF). The comparison of wave climate from this run with ECMWF re-analysis is in progress and will be presented at the conference. A 30-year (1980 to 2010) AMIP type wave climate (including wave height, length, direction, peak period, etc) will be generated and the wave climate change during this period will be discussed. The same model will also be used to simulate the wave climate change to the SST/sea ice anomalies in the late 21st century generated by coupled models in the World Climate Research Program Coupled Model Intercomparison Project 3 (CMIP3) archive for IPCC/AR4. Two-way Coupling between Surface Gravity Waves and Climate B. Fox-Kemper, A. Webb, L. Van Roekel, G. Danabasoglu, W. G. Large, and S. Peacock. University of Colorado, Boulder Results demonstrating the importance of surface gravity wave effects on global climate models will be presented, and a model-based assessment of the impact of climate change on production of these waves as well. Presently, the surface gravity wave field is not an explicit component of most global climate models. However, mixing by wave-driven turbulence (Langmuir turbulence) has the potential to dramatically reduce certain climate model biases in the near surface ocean. Including other wave effects promises to reduce other climate model biases. A description of some uncertainties and capabilities of present global modeling and observation of the surface gravity wave field parameters will be presented, along with an assessment of whether these uncertainties outweigh typical variability in the wave field. The expected magnitude of changes due to the seasonal cycle and climate change, and whether these may be reliably modeled will be used to demonstrate degree of feasibility. Finally, preliminary results incorporating the NOAA WaveWatch-III model as a component of the NCAR Community Earth System model, allowing for a two-way coupling of wave effects and climate, will be presented. A strategy for the regional projections of wind waves using winds from climate model simulation refined with high resolution non-hydrostatic atmospheric model Alexander Gavrikov, Sergey Gulev and Vika Grigorieva IORAS, Moscow, gul@sail.msk.ru Wave parameters are not directly computed by the coupled climate models in present climate simulations and in scenario runs. Instead, wave characteristics can be hindcasted offline using winds from climate model runs as a forcing function for the numerical experimentation with wave models, or statistical methodologies. In both cases, simulated projected waves will be largely dependent on winds whose relatively coarse resolution does not allow to exploit wave model potential to a full extent. For regional scale, especially in the areas where local wind effects might be critical for the adequate representation of wave fields, high resolution hindcasting of winds using present day mesoscale prognostic systems gives a good prospect for establishing more truth in projected waves. We demonstrate this potential for the areas of Barents sea using Weather Research and Forecasting (WRF) model in horizontal resolutions from 12 to 6 kilometers and lateral boundary conditions from selected AR4 models for the present climate simulations and scenario runs during 21st century. Simulated winds over the area of 2000 by 2000 km were then used to force WAVEWATCH model to hindcast local wave parameters. This approach is particularly effective for simulation of strongly constrained by extreme winds wave extremes in climate records and providing more accurate estimates of the occurrence of extreme waves and winds in the future climate. Preference: oral/poster Contact: Sergey Gulev, IORAS, 36 Nakhimovsky ave., 119997 Moscow Russia Phone: +7-499-1247985, email: gul@sail.msk.ru North Sea wave climate projections for anthropogenic future climate change: an ensemble study Iris Grabemann, Nikolaus Groll and Ralf Weisse Helmholtz-Zentrum Geesthacht Center for Materials and Coastal Research, Institute for Coastal Research, Geesthacht, Germany Anthropogenic climate change may cause long-term changes in wind, wave and storm surge conditions of the North Sea which could have significant impacts on coastal and offshore activities. To estimate possible future changes in the North Sea wave conditions, the effects of an ensemble of eight future climate projections are analysed. This ensemble consists of four transient projections (2001-2100) reflecting the IPCC emission scenarios A1B and B1 and two different initial states, and of four time slice projections (2071- 2100) including the emission scenarios A2 and B2 and two different global climate models. Regionalised wind fields from the global climate simulations are used to force the spectral wave model WAM for the North Sea. The potential changes in wave conditions are studied by comparing future statistics with the corresponding reference conditions (1961-1990 or 2000). While for large parts of the North Sea area the severe significant wave heights show an increase towards the end of this century, there are large uncertainties in the magnitude and the spatial patterns of the climate change signals between the eight climate projections. Additionally, the climate signals display strong temporal variations in magnitude and patterns on decadal time scales within and between the four transient projections. For coastal activities especially the synchronous occurrence of severe waves and storm surges is crucial. Using similar future projections for storm surge changes in the North Sea, the joint frequency distribution of storm surge and wave heights is analysed. Special emphasis is given to the discussion of uncertainties due to scenarios, global climate models and natural variability which should be taken into account in climate impact research. 130 years of visual wind wave observations from VOS (1880-2009): observed climate variability in mean and extreme wave characteristics Sergey Gulev and Vika Grigorieva IORAS, Moscow, gul@sail.msk.ru Voluntary observing ship (VOS) data provide the longest global time series of wind wave characteristics, such as wave heights (prior the late 1950s) and heights, periods and directions of wind sea and swell (starting from the late 1950s). These data form the basis for the regularly updated global wind wave climatology maintained at IORAS. We present the results of the analysis of centennial-scale climate variability of mean and extreme SWH from 1880 onwards. Time dependent biases associated with inadequate sampling were homogenized and the trends and interdecadal changes are considered to be free of artifacts. During the last 130 years our analysis identified upward changes in the mean wave height over North Pacific (up to 7 cm/decade) and the absence of significant linear trends in the North Atlantic. However, after 1950 waves are growing up over Northern Hemisphere mid latitudes showing the strongest increase in the North Atlantic of 12 cm/decade. Extreme waves were estimated from initial value distribution and using peak over threshold methods. In order to apply extreme value statistics to heavily and inhomogeneously undersampled VOS data, we used 6-hourly snapshots of wave characteristics from ERA-40-WAM hindcast covering the period from 1958 to 2002. These model data were subsampled in order to simulate VOS sampling density. We found statitically significant changes in wave extremes, implying growing tendency in both Atlantic and Pacific. Interestingly, for the last 5-6 decades in the Pacific changes in extreme SWH are clearly coordinted with the increase of extreme seas, while in the North Atlantic changes in extreme SWH do not show correlation with extremes in wind sea, but rather linked to the changes in swell. For the period after 1970 our analysis also includes wave periods and directions. Secular increase of wind sea periods in both Northern and Southern Hemispheres is not, however proportional to the changes in wind sea heights, implying statistically significant trend in the wind sea steepness. Furthermore, data for the last 40 years clearly show that extreme waves become more steep for most areas. Results of the analysis of visual VOS data provide the ground for extensive validation of model hindcasts of wave parameters using state of the art wave modelling platforms and forcing functions from reanalyses and climate models. Coordinated global wave climate projections. M.A. Hemer1, J.A. Church1, V.R. Swail2 and X.L. Wang2. 1 Centre for Australian Weather and Climate Research: A partnership between the Bureau of Meteorology and CSIRO Marine and Atmospheric Research Hobart, Tas 7001, Australia 2 Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada. Future changes in surface ocean wave conditions received only minimal attention in the IPCC AR4, despite recognition that wave heights have altered over large portions of the global ocean through the historical record. WG-2 identified waves as one of eight main climate drivers affecting the coast, yet WG-1 indicated that the limiting factor in making assessments of the effects of climate change on coastal erosion is insufficient projections of wave conditions. Beyond the coastal zone, potential future ocean wave changes will have important implications for many offshore applications. In recent years, several regional wave climate projections have been carried out, where surface forcing/covariates are produced by regional climate models which have been used to downscale global climate model scenarios. Many of these models have repeated effort, downscaling identical GCM for the same emission scenarios (using different regional models). Given substantial uncertainty exists in projected circulation patterns from available GCMs, increased confidence in projections requires runs over an increased number of run ensembles (altered GCM, altered SRES and ensembles of each set). Increasingly more regions are interested in surface ocean wave climate projections. The current regional approach dictates considerable repeated effort, so we advocate a shift to global projections (statistical and dynamical). This comes at substantial computational cost, which can be countered by interested parties participating in a coordinated approach (along the lines of the CMIP experiments), whereby individual research groups carry out global projections for selected scenarios. When combined with results from other groups, a distribution of projections will be available to increase statistical certainty. Once global projections are established, downscaling methods may be applied to obtain sufficient information for regional assessments. The proposed CMIP5 experimental design allows global projections of wave climate, in a manner resembling the prior regional assessments, focussing on mid and end of 21st century time-slices. Projected future wave climate along Australias eastern margin Mark Hemer1, Jack Katzfey1, Kathleen McInnes1 and Rosh Ranasinghe2 1CAWCR-CSIRO, Australia 2 UNESCO IHE and TU Delft, The Netherlands This paper explores three sources of uncertainty in dynamical wave climate projections on both regional (East Australian) and global domains. In each case, the WAVEWATCH III spectral wave model is forced with climate model derived surface winds and ice concentrations for a present 20-yr time-slice (1981-2000) and a projected future 20-yr time-slice (2091-2100). The first level of uncertainty in future climate projections is the way the climate will respond to greenhouse gas concentrations, which is often assessed through the comparison of different GCM model responses to a particular emission scenario. To explore this level of uncertainty, a 3-member ensemble where CSIROs stretched grid downscaling model (CCAM) has been used to dynamically downscale three different CMIP-3 GCMs (CSIRO Mk3.5, GFDLcm2.0 and GFDLcm2.1) is considered. The second of these uncertainties is the uncertainty in the future emissions of greenhouse gases, which is addressed in the wave model simulations by applying wind forcing from the CCAM simulations forced with plausible future scenarios of greenhouse gas emissions (SRES A2 and B1), for each of the 3-member ensemble. The third level of uncertainty surrounds how biases in forcing wind data (which were found between CCAM downscaled GCM winds and observational/reanalysis winds) are treated. Three different methods of applying wind forcing to wave models to develop future wave climate projections were tested. 1. Forcing the model with un-adjusted climate model winds, 2. Bias-adjusting climate model surface winds to account for both climate and variability bias to more closely represent reanalysis winds, and in turn force the wave model, and 3. Perturb the observed (reanalysis) present climate wind field by the difference between the present and projected climate model wind field, to force the wave model. This limited but not exhaustive investigation of three contributions to uncertainty in projected regional east Australian wave climate has found that the different method of applying winds from a climate model to the wave model introduce the largest uncertainty in the final results. Investigations of these same three contributions of uncertainty to global wave climate projections are currently underway, where downscaled CCAM surface winds are being used to force a 1 degree global implementation of WAVEWATCH III for two 30-yr time-slices (1979-2009 to align with the NCEP CFSR, and 2070-2099). Preliminary results will be presented at the workshop. Statistical downscaling of extreme wave climate Cristina Izaguirre, Paula Camus, Melisa Menendez, Fernando J. Mendez, Iigo J. Losada Environmental Hydraulics Institute IH Cantabria, Universidad de Cantabria, Spain It is well known nowadays that the seasonal-to-interannual variability of wave climate is linked to the anomalies of the atmosphere circulation. In this work, we propose an extreme value model for extreme significant wave height at a particular site (predictand) conditioned to the synoptic-scale weather type (predictor). We combine different state-of-the-art extreme value models based on the Generalized Extreme Value (GEV) for block maxima and the Poisson-Pareto model for exceedances over a threshold and clustering techniques (self-organizing maps, K-means) applied to n-days-averaged sea level pressure field (SLP) anomalies to describe weather types. We fit the statistical model using as predictor the n-days-averaged SLP fields calculated by NCEP atmospheric reanalysis (1948-2010) and as predictand is the distribution of maxima every n-days in a specific location of the GOW1.0 calibrated wave reanalysis of IH Cantabria. The spatial and temporal domain of the predictor is chosen by means of a sensitivity analysis and based on physical criteria. We analyze the suitability of this methodology to be used for long-term projection of extreme wave climate to different climate change scenarios. Numerical Study of Wind Wave Climatology over the Northwestern Pacific Ocean using Operational Ocean Forecasting System in KMA KiRyong Kang, WooJeong Lee, LongSuk Park, Sung Hyup You and SangBeum Ryoo Korea Meteorological Administation, Seoul, 156-720, Korea E-mail :  HYPERLINK "mailto:krkang@kma.go.kr" krkang@kma.go.kr, Understanding the long-term change of the wave environment including the extreme wave case will be helpful for the operational wave field, for planning of coastal structures and especially mitigation of ocean hazards. The Northwestern Pacific Ocean is one of the active areas in the world with severe impacts of tropical cyclones. In this study we investigated the long-term trend of wave height of the Northwestern Pacific Ocean for 40 years (1960 2000) in terms of the spatial and temporal variation using the Korea Meteorological Administration (KMA)s operational wave forecasting system which is based on the third generation wave model called the WAVEWATCH III (WW3). The wind data, as a forcing term to generate the wave in the ocean, was produced by the Climate Data Assimilation System (CDAS) of the National Centers for Environmental Prediction. The simulated wave climatology is basically compared with global ECMWF ERA40 wave reanalysis data. A difference was shown at the distribution of the maximum wave height indicating the higher maximum wave vale displayed around East China Sea. From the EOF analysis of wave height, the contribution of the 1st, 2nd and 3rd component were 35.6%, 16.9%, and 12.81%, respectively. The first components eigen vector was maximum around 25N, 135E and gradually decreased into coast area, and second component divided into two areas centered at the cross line of the main axis of Kuroshio Current by the opposite sign of the eigen vectors. In the decadal mean distribution, it showed some increase trend in wave height compared to the values of 1960s, and it was winter season that the highest increase existed below 30N in terms of seasonal variation. However it also showed a decreased pattern around Korean peninsula during the winter. These indicate that the wave environment could change differently region by region in terms of the long-term atmospheric condition. Keywords: wave climatology, wave forecasting system, WAVEWATCH III, EOF Regional wave climate projection studies in the Mediterranean Sea P.Lionello Univ. of Salento and CMCC, Italy In the Mediterranean Sea to identify changes of the wave fields produced by future emission scenarios is important because of their action on its long coastlines (46,000 km) and their relevance for the intense ship traffic (with both a commercial and touristic component) in this basin. This contribution discusses the reliability of model simulations of wave climate in the Mediterranean Sea by comparing the last part of a 44 -year long hindcast study with observations and presents the results of climate scenario simulations. It is shown that simulations reproduce adequately the characteristics of the monthly average fields, though with some limitations in reproducing the variability of extremes. The analysis of a model simulation, based on the wind fields of the RegCM regional climate model, suggests milder marine storms and wave conditions in future climate scenarios for both average and extreme values in winter, spring, and autumn, while in summer in some areas mean and extreme SWH becomes higher. Most changes appear to increase with the emission level and some of them are consistent with present climate trends. Dynamic Projection of Future Wave Climate Change in Global Scale Nobuhito Mori, Tomoya Shimura, Tomohiro Yasuda and Hajime Mase Disaster Prevention Research Institute, Kyoto University, Japan The influence of global climate change due to green house effects on the earth environment will require impact assessment, mitigation and adaptation strategies for the future of our society. This study directly predicts future ocean wave climate in comparison with present wave climate based on the atmospheric general circulation model and global spectral wave model. The future change of annual averaged and extreme sea surface winds and waves are analyzed in detail. There are clear regional dependence of both annual average and also extreme wave height changes from present to future climates. Although, the future wave period change is negligible, the wave direction change will be significant in the middle latitude. Detail of analysis will be presented at the conference. References Mori, N., T. Yasuda, H. Mase, T. Tom and Y. Oku (2010) Projection of extreme wave climate change under the global warming, Hydrological Research Letters, Vol.4, pp.15-19. Mori, N., T. Yasuda, R. Iwashima, T. H. Tom, H. Mase and Y. Oku (2009) Impact of global climate change on wave climate, Coastal Dynamics 2009, CD-ROM, No.135 On the relevance of time and spatial variability of long term wave hindcast on energy resources evaluation and its potential implications onto wave climate projection uncertainties. F. J. Ocampo-Torres and the Waves Group at CICESE Department of Physical Oceanography, CICESE, Ensenada BC 22860 Mexico Making use of long-term numerical simulation and short-period in situ records of the wave field, time and spatial variability of the most important wave characteristics has been assessed in order to determine its impact on the estimation of energy potentially available. The area of interest is the Pacific coastal region off the Baja California peninsula in Mexico. Implementing a third generation spectral wave model over practically the whole Pacific Ocean, using NCEP surface wind re-analysis as forcing fields, hindcast results are obtained for oceanic scale runs (1 x 1 degree resolution). Smaller scale and finer resolution results are obtained after nesting the SWAN model in the coastal region. An important issue is the wide range of frequencies resolved by the models in order to better reproduce relevant processes in coastal regions such as non-linear interactions and changes in the directional spreading of the wave spectrum. A detailed analysis of time variability of the wave field is performed and the potential impact on the estimation of extreme values is assessed. Long term tendencies of wave parameters are discussed within the context of local and coastal behaviour of the wave phenomenon, while its potential impact on wave climate projections are also addressed. Response of extreme waves to variations in regional North Atlantic climate Will Perrie, Lanli Guo, Bash Toulany, Zhenxia Long Bedford Institute of Oceanography, Canada Winds are always of key importance in any study of ocean waves. To consider the impacts of climate variability, we do dynamical downscaling to simulate winds related to extra-tropical cyclones in the Northwest Atlantic, and consider the variability of cyclone climatology, and the impacts of climate change following accepted IPCC scenarios. Two methodologies are attempted. In one approach (Jiang and Perrie, 2007, 2008) a mesoscale atmospheric model is used to simulate ensembles of cyclone winds. In this methodology, we also considered the influence of atmosphere-ocean two-way coupled dynamics, on storm intensity (which can reduce 10-m winds by as much as 24 m/s) and on storm tracks (Yao et al., 2008; Perrie et al., 2010); the impact of climate change is seen in slightly decreased intensities in landfalling cyclones (~5 hPa) resulting from the competition between climate change warming and modest cooling near the storm center induced by dynamic cooling, and slight northward shift in cyclone tracks. Storms with trajectories that move close to the upper level steering jet exhibit the largest change in tracks, moving closer to the North American coast (Jiang and Perrie, 2008). In an alternate approach, (Long et al., 2010, Perrie et al., 2011) a relatively fine-resolution regional climate model is used to simulate cyclones and their climatology, in this simulations up to ~ century timescales. In this presentation, we focus on the latter methodology. For present climate, the integration was performed for 1970-1999; results give a relatively accurate description of marine winds and surface air temperature. Winds are used to drive a modern state-of-the-art wave model WaveWatchIII (WW3) version 3.14, using mosaic-grid two-coupled fine-coarse mesh grids to estimate climate effects on waters off eastern Canada. EOF analysis is used to show that decreases (increases) in highest significant wave heights for each autumn-storm season correspond to decreases (increases) in extra-tropical cyclone activity in the Northwest Atlantic. References 2011. Perrie, L.Guo, Z.Long, J.Chass, Y.Zhang, A.Huang. Dynamical downscaling over the Gulf of St. Lawrence using a regional climate model. Submitted to J. Geophys. Res. 2010 Perrie, W., Yao, Y., and W. Zhang, On the Impacts of Climate Change and the Upper Ocean on Midlatitude Northwest Atlantic Landfalling Cyclones. J. Geophys. Res. In press. 2009 Long, Z., W. Perrie, J. Gyakum, R. Laprise, and D. Caya, Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic, J. Geophys. Res., 114, D12111, doi:10.1029/2008JD010869. 2008 Yao, Y., Perrie, W., Zhang, W., and Jiang, J. The characteristics of atmosphere-ocean interactions along North Atlantic extratropical storm tracks. J. Geophys. Res., 113, D14124, doi:10.1029/2007JD008854. 2008 Jiang J., and W. Perrie. 2008: Climate Change Effects on North Atlantic Cyclones. J. Geophys. Res., 113, D09102, doi:10.1029/2007JD008749. 2008 Huang, Y., Yin, B., and Perrie, W. Responses of summertime extreme wave heights to local climate variations in the East China Sea. J. Geophys. Res./, 113, C09031, doi:10.1029/2008JC004732. 2006 Jiang, J., and Perrie, W., 2006: The Impacts of Climate Change on Autumn North Atlantic Midlatitude Cyclone. Journal of Climate, Vol. 20, No. 7, pages 11741187. The influence of atmosphere-ocean-wave coupling, wave drag and sea spray on ocean waves in midlatitude storms Will Perrie, Weiqing Zhang, Lanli Guo, Bash Toulany Bedford Institute of Oceanography, Canada A coupled atmosphere wave sea spray model system is used to evaluate the impacts of sea spray and wave drag on storm-generated significant wave height (Hs), wind-wave directional variations, and directional wave spectra related to the storm location and translation speed. Although the sea state may be complex, results suggest that the decrease/increase of Hs due to wave spray and wave drag is most significant in high wind regions to the right of the storm track. Because of the additional effect of storm translation speed, particularly when the storm moves in the same direction as the local wind, maximum wave heights tend to occur several hours after the peak wind events. Moreover, the directional misalignment between local winds and propagating waves, within rapidly moving winter storms, can be a great and highly variable effect, in relation to the location of the storm centre. The spatial variation of the directional wave spectra is closely related to the relative position of the storm center, and depends on the location of the radius of maximum winds, and the storm translation speed. While wave-drag and sea spray can reduce or increase the magnitudes of wind and Hs, respectively, they have little apparent effect on the directional wave spectra, as their parameterizations have thus far not included dependence on directional seastate. References Zhang, W., and Perrie, W., 2008: The influence of air-sea roughness, sea spray and storm translation speed on waves. J. Physical Oceanography, Vol. 38, No. 4, pages 817839. Zhang, W., Perrie, W., and W. Li, 2006: Impacts of waves and sea spray on midlatitude storm structure and intensity, Monthly Weather Review, Vol. 134, No. 9, pages 24182442. Ren, X., and W. Perrie, 2006: Air sea interaction of typhoon Sinlaku (2002) simulated by the Canadian MC2. Advances in Atmospheric Science. Vol. 23, No. 4, pages 521-530. Perrie, W., Andreas, W. Zhang, W. Li, E. L, Gyakum, J. and McTaggart-Cowan, R., 2005: Impact of sea spray on rapidly intensifying cyclones at midlatitudes. J. Atmospheric Sciences. Vol. 62, pp. 1867-1883. Ren, X., Perrie, W., Long, Z., Gyakum, J., and McTaggart-Cowan, R. 2004: On the atmosphere-ocean coupled dynamics of cyclones in midlatitudes. Monthly Weather Rev. 132: 2432-2451. (4). Impact of a Warmer Climate on the Global Wave Field Preliminary Results Alvaro Semedo Escola Naval-CINA, Lisbon, Portugal, and Uppsala University, Sweden Arno Beherens Helmholtz-Zentrum Geesthacht, Center for Materials and Coastal Research, Germany Lennart Bengtsson National Centre for Earth Observation, University of Reading, Whiteknights, Reading, United Kingdom, and Max Planck Institute for Meteorology, Hamburg, Germany Heinz Gunter Helmholtz-Zentrum Geesthacht, Center for Materials and Coastal Research, Germany Andreas Sterl Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands Ralf Weisse Helmholtz-Zentrum Geesthacht, Center for Materials and Coastal Research, Germany The details of the evolution of the global wave climate and its change in a changing climate received minimal attention in the IPCC Fourth Assessment Report (AR4). It is restricted to the long term variability of the significant wave height parameter, based on visual estimates from voluntary observing ships, ignoring other wave parameters. Despite some attempts in studying the impact of a warmer climate in the global wave field based on statistical projections, and some recent regional dynamical projections using regional climate models to force wave models, a coherent global modeling study of the future changes in the global wave climate is still lacking. The extratropical cyclones are the main generating force behind the global wave field. Recent studies, based on runs with the high resolution (T213; 63 km) version of the ECHAM5 global climate model revealed that in a warmer climate extratropical storms will not necessarily get more intense. On the other hand a poleward shift on the extratropical storm tracks is expected in both hemispheres. The effects of these changes on the future global wave climate are investigated in the present study. The high resolution ECHAM5 10 m winds are used to force the wave model WAM and simulate the global wave climate of two 32-yr periods that are representative of the end of the twentieth (1959-1990) and twenty-first (2069-2100) centuries. The twentieth century period is the control period. The significant wave heights from the control period are compared with the ECMWF reanalysis ERA-40 for verification, and, for the short overlapping period (1989-1990), also with ERA-Interim. Preliminary results of the impact of a warmer climate at the end of the twenty-first century on the global significant wave height field are presented. Statistical reconstruction and projection of ocean waves Xiaolan L. Wang, Val R. Swail, and Yang Feng Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada This presentation is about using statistical methods to represent the relationship between ocean wave variables (significant wave height; may also include wave period and direction) and some closely related atmospheric predictors (such as those derived from the sea level pressure fields), and then using the relationship to reconstruct ocean wave conditions in the past century and to project possible future changes in ocean waves. First, the ERA40 reanalysis of SLP and ocean wave variables are used to calibrate the statistical relationships. Then, SLP data from the newly completed 20th Century Reanalysis (20CRv2) are used to reconstruct ocean wave conditions in the period from 1871-2008 (138 years) and to infer historical changes in global waves. The CMIP5 simulations of the present and possible future climates will also be used to project possible ocean wave changes in the 21st century. Regional wave climate simulations at the Helmholtz-Zentrum Geestacht, Institute for Coastal Research Ralf Weisse, Heinz Gnther, Iris Grabemann, Nikolaus Groll and Birgit Hnicke Helmholtz-Zentrum Geesthacht, Center for Materials and Coastal Research, Institute for Coastal Research, Geesthacht, Germany Studies on wave climate and wave climate changes have received increasing attention within the last few years. Among the reasons are the limited number of long-term observational measurements in combination with increasing interest from offshore industry and coastal protection management. Potential future changes in wave climate are of similar importance but from the global perspective the number of studies so far remains limited. Here we present an overview of past and ongoing activities at our Institute to simulate and analyse changes in regional wave climate. This comprises both, studies about recent changes (multi-decadal hindcasts) and potential future changes (climate change projections). So far, studies are regionally limited. Examples from the North Sea and the Baltic Sea are provided. While high-resolution regional studies are needed and are essential for regional planning and activities global studies on wave climate and wave climate changes are needed to obtain a large-scale picture and to provide the boundary conditions for regional simulations for exposed areas. We intend to provide a number of such global simulations that may substantially contribute to the workshop objectives. The wave climate of the NW European Continental Shelf Judith Wolf and Lucy Bricheno National Oceanographic Centre, Liverpool, UK. Over recent years various studies of the wave climate of the NW European continental shelf have been made using wave models validated against wave observations. Model runs include 10 year hindcast from 1999-2008 and projections of future wave climate around the UK driven by winds from a subset of the Met Office/Hadley Centre climate model ensemble members. The wave model which is used is based on the well-tested 3rd-generation spectral model WAM implemented on two grids: a coarse 1 grid for the Atlantic to provide boundary conditions, and a 12km model of the NW European continental shelf. The WAM model has been well-validated previously and is shown to be in reasonable agreement with observations for the hindcast runs and statistically in reasonable agreement with the ERA-40 reanalysis for the NE Atlantic. Seasonal mean and extreme waves are generally expected to increase to the SW of UK, reduce to the north of the UK and experience little change in the southern North Sea. There are large uncertainties especially with the projected extreme values. A detailed study of Liverpool Bay has been made using wave buoys and acoustic instruments within the footprint of a phased-array HF radar system (measuring currents and waves), as part of the NOC Irish Sea Observatory. Several years of data have been collected and are supplemented by an 11-year wave model hindcast. The variation of wave climate over various time-scales from seasonal and inter-annual to inter-decadal is examined, using various statistics, including extreme value methods. Projections of 50-year return period wave heights differ between different instruments and model datasets. The future wave climate of Liverpool Bay is not expected to change much from the present day. There is evidence for variability on decadal time-scales, with some correlation with the North Atlantic Oscillation, thus future extreme wave events will be closely related to future North Atlantic storm tracks. The WCRP-JCOMM Workshop on Coordinated Global Wave Climate Projections 11 - 13 April 2011, Geneva, Switzerland Provisional Annotated Agenda 1 Monday 11th April, 2011 1.A Opening and Welcome 08h30-09h00 Registration 09h00-09h30 Welcome (General Welcome, WCRP, JCOMM) 09h30-10h00 COWCLIP - an introduction by Hemer, CSIRO 10h00-10h30 Morning Tea 1.B Regional Projections 1 : Mediterranean 10h30-10h50Statistical downscaling of extreme wave climate by Izaguirre et al, IH Cantabria 10h50-11h10A hybrid system to downscale wave climate to coastal areas by Camus et al, IH Cantabria 11h10-11h30Wave climate projections in the NW Mediterranean by Casas-Prat and Sierra, UPC 11h30-11h50Regional wave climate projection studies in the Mediterranean Sea by Lionello, U.Salento 11h50-12h20 Discussion 12h20-13h20 Lunch 1.C Regional Projections 1 : North Sea Projections 13h20-13h40North Sea wave climate projections for anthropogenic future climate change: an ensemble study by Grabemann et al, HZG 13h40-14h00Regional wave climate simulations at the Helmholtz-Zentrum Geestacht, Institute for Coastal Research by Weisse et al, HZG 14h00-14h20Discussion 1.D Past Climate 14h20-14h40 Present and future global wave data sets from ECMWF re-analyses and their relevance for climate studies by Bidlot, ECMWF 14h40-15h00 Wave climate and direct computation of wave extremes estimated from 10 years of EPS prognoses by Breivik, NMI 15h00-15h30 Afternoon Tea 15h30-15h50 Numerical Study of Wind Wave Climatology over the Northwestern Pacific Ocean using Operational Ocean Forecasting System in KMA by Kang et al, KMA 15h50-16h10 Analysis of wave climate, observations and models by Ardhuin et al, IFREMER 16h10-16h40 Discussion 16h40-17h40 Targeted Discussion: Past Climate  2 Tuesday 12th April, 20112.A Global wave climate projections 09h00-09h20 Statistical reconstruction and projection of ocean waves by Wang et al, Environment Canada 09h20-09h40 Dynamic Projection of Future Wave Climate Projection Change in Global Scale by Mori et al, Kyoto U. 09h40-10h00 Impact of a warmer climate on the global wave field: Preliminary results by Semedo et al, CINAV and Uppsala University 10h00-10h30 Discussion 10h30-11h00 Morning Tea 2.B  Regional Projections 2 : Atlantic Coast 11h00-11h20 The wave climate of the NW European Continental Shelf by Wolf and Bricheno, NOC 11h20-11h40 Present and future wave climate analysis along the French mainland Atlantic coast, using wave dynamical downscaling by Charles et al, BRGM 11h40-12h00 Dynamical downscaling of regional wave climate in the Northern North Atlantic: results and challenges by Debenard and Roed, NMI 12h00-12h30 Discussion 12h30-13h30 Lunch 2.C Regional Projections 2 : Others 13h30-13h50 Exploring uncertainty in dynamical wave projection studies by Hemer et al, CSIRO 13h50-14h10 On the relevance of time and spatial variability of long term wave hindcast on energy resources evaluation and its potential implications onto wave climate projection uncertainties by Ocampo-Torres, CICESE 14h10-14h30 Discussion 14h30-15h30 Targeted Discussion: Regional Climate Projections 15h30-16h00 Afternoon Tea 2.D Coupling 16h00-16h20 Two-way coupling between surface gravity waves and climate by Fox-Kemper et al, CIRES/UC-Bulder 16h20-16h40 Simulated wave climatology during the past 30 years and wave climate projection in the late 21st Century by Fan et al, NOAA/GFDL 16h40-17h00 Discussion 17h00-18h00 Targeted Discussion: coupling3 Wednesday 13th April, 20113.A Summary Discussions 09h00-1000 Invited talk (WGCM and CMIP: Baylor Fox Kemper) 10h00-10h30 Morning Tea 10h30-11h30 Targeted Discussion: COWCLIP - does it have legs? 11h30-13h00 Summary Discussion and Recommendation/Action Discussion may follow into the afternoon if required. COWCLIP RegistrationsOle Johan AarnesNorwegian Met InstituteNorway HYPERLINK "mailto:oyvind.breivik@met.no" oyvind.breivik@met.noFabrice ArdhuinIFREMERFrance HYPERLINK "mailto:Fabrice.Ardhuin@ifremer.fr" Fabrice.Ardhuin@ifremer.frJean BidlotECMWFUK HYPERLINK "mailto:jean.bidlot@ecmwf.int" jean.bidlot@ecmwf.intFrancois Boucquet (can not attend)UK MetOfficeUK HYPERLINK "mailto:francois.bocquet@metoffice.gov.uk" francois.bocquet@metoffice.gov.ukOyvind BreivikNorwegian Met InstituteNorway HYPERLINK "mailto:oyvind.breivik@met.no" oyvind.breivik@met.noSofia CairesDeltaresThe Netherlands HYPERLINK "mailto:sofia.caires@deltares.nl" sofia.caires@deltares.nlJonas Takeo CarvalhoBrazilian Navy Hydrographic CentreBrazil HYPERLINK "mailto:jtcarvalho@gmail.com" jtcarvalho@gmail.comMerce Casas I PratUniversitat Politecnica CatalunyaSpain HYPERLINK "mailto:merce.casas@upc.edu" merce.casas@upc.eduElodie CharlesBRGMFrance HYPERLINK "mailto:e.charles@brgm.fr" e.charles@brgm.frKwok Fai CheungUni. Hawaii ManoaUSA HYPERLINK "mailto:cheung@hawaii.edu" cheung@hawaii.eduJens Debernard (can not attend)Norwegian Met InstituteNorway HYPERLINK "mailto:jens.debernard@met.no" jens.debernard@met.noYalin FanGFDLUSA HYPERLINK "mailto:yalin.fan@noaa.gov" yalin.fan@noaa.govGreg Flato (can not attend)Environment CanadaCanada HYPERLINK "mailto:greg.flato@ec.gc.ca" greg.flato@ec.gc.caBaylor Fox-KemperCIRES/CU-BoulderUSA HYPERLINK "mailto:bfk@colorado.edu" bfk@colorado.eduIris GrabemannHelmholtz-Zentrum GeestachtGermany HYPERLINK "mailto:iris.grabemann@hzg.de" iris.grabemann@hzg.deNikolaus GrollHelmholtz-Zentrum GeestachtGermany HYPERLINK "mailto:nikolaus.groll@hzg.de" nikolaus.groll@hzg.deHeinz GuentherHelmholtz-Zentrum GeestachtGermany HYPERLINK "mailto:heinz.guenther@hzg.de" heinz.guenther@hzg.deSergey Gulev (can not attend)IORASRussiaSergey Gulev [gul@sail.msk.ru]Mark HemerCAWCRAustralia HYPERLINK "mailto:mark.hemer@csiro.au" mark.hemer@csiro.auKiryong KangKorean Met AgencyKorea HYPERLINK "mailto:krkang@kma.go.kr" krkang@kma.go.krAmelie LaugelSaint-Venant LabFrance HYPERLINK "mailto:amelie.laugel@edf.fr" amelie.laugel@edf.frPiero LionelloUniversity of SalentoItaly HYPERLINK "mailto:piero.lionello@pd.infn.it" piero.lionello@pd.infn.itGiovanni MattaroloSaint-Venant LabFrance HYPERLINK "mailto:amelie.laugel@edf.fr" amelie.laugel@edf.frFernando J. MendezIH CantabriaSpain HYPERLINK "mailto:mendezf@unican.es" mendezf@unican.esMelisa MenendezIH CantabriaSpain HYPERLINK "mailto:menendezm@unican.es" menendezm@unican.esNobuhito MoriKyoto UniversityJapan HYPERLINK "mailto:mori.nobuhito.8a@kyoto-u.ac.jp" mori.nobuhito.8a@kyoto-u.ac.jpFrancisco Ocampo TorresOceanografia FisicaMexico HYPERLINK "mailto:ocampo@cicese.mx" ocampo@cicese.mxWilliam Perrie (can not attend) Bedford Institute OceanographyCanada HYPERLINK "mailto:william.perrie@dfo-mpo.gc.ca" william.perrie@dfo-mpo.gc.caLarse RoedNorwegian Met InstituteNorway HYPERLINK "mailto:lars.roed@met.no" lars.roed@met.noNadia RojiCINAVPortugalnadia.sofia.rijo@marinha.ptMorten RugbjergDHIGroupDenmark HYPERLINK "mailto:mnr@dhigroup.com" mnr@dhigroup.comAlvaro SemedoUppsala UniversitetSweden HYPERLINK "mailto:alvaro.semedo@met.uu.se" alvaro.semedo@met.uu.seVal Swail (can not attend)Environment CanadaCanada HYPERLINK "mailto:val.swail@ec.gc.ca" val.swail@ec.gc.caXiaolan WangEnvironment CanadaCanada HYPERLINK "mailto:xiaolan.wang@ec.gc.ca" xiaolan.wang@ec.gc.caRalf WeisseHelmholtz-Zentrum GeestachtGermany HYPERLINK "mailto:ralf.weisse@hzg.de" ralf.weisse@hzg.deJudith WolfNOC LiverpoolUK HYPERLINK "mailto:jaw@pol.ac.uk" jaw@pol.ac.ukTomohiro YasudaKyoto UniversityJapan HYPERLINK "mailto:yasuda.tomohiro.4x@kyoto-u.ac.jp" yasuda.tomohiro.4x@kyoto-u.ac.jp ./Sde  s t u v   v^K$hibhY0JCJOJQJ^JaJ/jhibh5fwCJOJQJU^JaJ hchYCJOJQJ^JaJ$hibh7B.0JCJOJQJ^JaJ/jhibh5fwCJOJQJU^JaJhibCJOJQJ^JaJ#jhibCJOJQJU^JaJhuhuhu5OJQJ^JhjDhj~hYHhhWh=EihF9 Seu  $ & Fd[$a$gd*p< & Fgdc & F7$8$H$gdc 7$8$H$gd7B.$a$gd=Ei   C D E m n Ϸݤϓs[K8$h5fwhr0JCJOJQJ^JaJhr0JCJOJQJ^JaJ/jh5fwhrCJOJQJU^JaJhrCJOJQJ^JaJ#jhrCJOJQJU^JaJ hTh*p<CJOJQJ^JaJ$hibh*p<0JCJOJQJ^JaJ/jhibh*p<CJOJQJU^JaJh*p<CJOJQJ^JaJ#jh*p<CJOJQJU^JaJ hThYCJOJQJ^JaJ p m ;>!pA & F b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$gd~c & F7$8$H$gdc & Fgdc$ & Fd[$a$gdc & Fgdrn p q ! " # ˳٠t^L0^7jh5fwh5fwCJOJQJU^JaJmH sH "h5fwCJOJQJ^JaJmH sH +jh5fwCJOJQJU^JaJmH sH (hTh7B.CJOJQJ^JaJmH sH ,hibh7B.0JCJOJQJ^JaJmH sH $hibh7B.0JCJOJQJ^JaJ/j"hibh5fwCJOJQJU^JaJhibCJOJQJ^JaJ#jhibCJOJQJU^JaJ(hThrCJOJQJ^JaJmH sH  # j k m n wdRD,R/jh5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ$hchc0JCJOJQJ^JaJ/j:hch?CJOJQJU^JaJhcCJOJQJ^JaJ#jhcCJOJQJU^JaJ hThlkCJOJQJ^JaJ+jh5fwCJOJQJU^JaJmH sH $h5fwhlk0JCJOJQJ^JaJ,h5fwhlk0JCJOJQJ^JaJmH sH  9:;<ijk 2Tǵǧ|kǧS@|@$h5fwh=Ei0JCJOJQJ^JaJ/jh5fwh5fwCJOJQJU^JaJ hThywCJOJQJ^JaJ$h5fwhyw0JCJOJQJ^JaJ/jdh5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJ#hch7B.CJOJQJ\^JaJ#jh5fwCJOJQJU^JaJ'h5fwh7B.0JCJOJQJ\^JaJ$h5fwh7B.0JCJOJQJ^JaJstǫٔقmYJ0Y2jh5fwh5fwCJOJQJU\^JaJh5fwCJOJQJ\^JaJ&jh5fwCJOJQJU\^JaJ(hThYCJOJQJ^JaJmH sH "hWCJOJQJ^JaJmH sH ,h5fwhY0JCJOJQJ^JaJmH sH 7jh5fwh5fwCJOJQJU^JaJmH sH "h5fwCJOJQJ^JaJmH sH +jh5fwCJOJQJU^JaJmH sH  hchYCJOJQJ^JaJ <=>?^_`  ůjUCU1#jh5fwCJOJQJU^JaJ"hWCJOJQJ^JaJmH sH (hThYCJOJQJ^JaJmH sH ,h5fwhY0JCJOJQJ^JaJmH sH 7jh5fwh5fwCJOJQJU^JaJmH sH "h5fwCJOJQJ^JaJmH sH +jh5fwCJOJQJU^JaJmH sH #hchCJOJQJ\^JaJ&jh5fwCJOJQJU\^JaJ'h5fwh0JCJOJQJ\^JaJ EFG!"OPȵȤlYF./j3h5fwh5fwCJOJQJU^JaJ$hh0JCJOJQJ^JaJ$hh0JCJOJQJ^JaJ/jhhCJOJQJU^JaJhCJOJQJ^JaJ#jhCJOJQJU^JaJ hThCJOJQJ^JaJ$h5fwh0JCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ/jh5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJPQxnopqvcScE-/jK h5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJh~c0JCJOJQJ^JaJ$hYHh~c0JCJOJQJ^JaJ/jhYHh~cCJOJQJU^JaJh~cCJOJQJ^JaJ#jh~cCJOJQJU^JaJ(h~chywCJOJQJ^JaJmH sH ,h5fwhyw0JCJOJQJ^JaJmH sH $h5fwhyw0JCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ*+,paGp3p'h5fwhY0JCJOJQJ\^JaJ2ji h5fwh5fwCJOJQJU\^JaJh5fwCJOJQJ\^JaJ&jh5fwCJOJQJU\^JaJ hchywCJOJQJ^JaJ hThyw$h5fwhyw0JCJOJQJ^JaJj h5fwh5fwUh5fwjh5fwU hTh7B.CJOJQJ^JaJ$h5fwh7B.0JCJOJQJ^JaJ#jh5fwCJOJQJU^JaJpV2v=ZE b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GIs7$8$H$^`sgdYHA & F b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$gdc  & Fgdc & Fgdc  & Fgdc HIJUVWz͵ۢxcQ<(hch=EiCJOJQJ^JaJmH sH "hWCJOJQJ^JaJmH sH (hTh=EiCJOJQJ^JaJmH sH ,h5fwh=Ei0JCJOJQJ^JaJmH sH $h5fwh7B.0JCJOJQJ^JaJ$h5fwh=Ei0JCJOJQJ^JaJ/j h5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ#hchYCJOJQJ\^JaJz{|$%123QRS¯ՌycQ5c7j h5fwh5fwCJOJQJU^JaJmH sH "h5fwCJOJQJ^JaJmH sH +jh5fwCJOJQJU^JaJmH sH $hTh=EiCJOJPJQJ^JaJhWCJOJQJ^JaJ(h5fwh=Ei0JCJOJPJQJ^JaJ$h5fwh7B.0JCJOJQJ^JaJ$h5fwh=Ei0JCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ/jy h5fwh5fwCJOJQJU^JaJ S<tu鿩tZE2$h5fwhyw0JCJOJQJ^JaJ(h5fwhyw0JCJOJPJQJ^JaJ3jy h5fwh5fwCJOJPJQJU^JaJh5fwCJOJPJQJ^JaJ'jh5fwCJOJPJQJU^JaJ hchYCJOJQJ^JaJ+jh5fwCJOJQJU^JaJmH sH $h5fwhY0JCJOJQJ^JaJ,h5fwh0JCJOJQJ^JaJmH sH ,h5fwhY0JCJOJQJ^JaJmH sH uvw;<=>abcǯ؜؋ykSy@y2hCJOJQJ^JaJ$h5fwh0JCJOJQJ^JaJ/j h5fwh5fwCJOJQJU^JaJh5fwCJOJQJ^JaJ#jh5fwCJOJQJU^JaJ hchCJOJQJ^JaJ$hWh0JCJOJQJ^JaJ/j hWh%>CJOJQJU^JaJ hWh%>CJOJQJ^JaJ)jhWh%>CJOJQJU^JaJ$hch%>CJOJPJQJ^JaJ<Lxpddd $7$8$H$a$gd;m$a$gdib$a$gd;mgd=Ei; b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$gdyw= b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$gdc $);<KLM˹{m{m{[I8 hTh;mCJOJQJ^JaJ#h;mh7B.6CJOJQJ^JaJ#h;mh;m6CJOJQJ^JaJh;mCJOJQJ^JaJ h;mh7B.CJOJQJ^JaJhibh7B.CJaJ h;mh=EiCJOJQJ^JaJ hTh=EiCJOJQJ^JaJ#hTh=Ei5CJOJQJ^JaJ$hTh=EiCJOJPJQJ^JaJ hThCJOJQJ^JaJ hThrCJOJQJ^JaJLMs u w )!5!6!7!""Q$R$''($a$gd*p< $7$8$H$a$gd;m$a$gdY$a$gdD# $a$gdib$a$gdY$dd[$\$a$gd7B. 7$8$H$gd7B.MlBa0Ut89s v w 5!''(ᆲ|j|_hibh*p<CJaJ#h;mhY6CJOJQJ^JaJ hThYCJOJQJ^JaJhD#hY5CJOJQJ\hibhYB*CJaJph"h;mCJOJQJ^JaJmH sH (hTh7B.CJOJQJ^JaJmH sH hm0CJOJQJ^JaJh;mCJOJQJ^JaJ hTh7B.CJOJQJ^JaJ ((7(e(f())++--../e/f/v///33$a$gdr 7$8$H$gdr $7$8$H$a$gdr $a$gdr 7$8$H$gd*p< $7$8$H$a$gd*p<((7(e())++--..////N/d/e/f/t/u/v//3ᮟ|n]nK]#hThr6CJOJQJ^JaJ hThrCJOJQJ^JaJhrCJOJQJ^JaJ#hThr5CJOJQJ^JaJ hD#hr0JCJKHOJQJhibhrB*CJaJphh*p<B*CJaJph(hTh*p<CJOJQJ^JaJmH sH #h;mh*p<6CJOJQJ^JaJ hTh*p<CJOJQJ^JaJh*p<CJOJQJ^JaJ333#4v4w4Q7x7K:L:M:O:P:Q:˹˓~mYB,+hThlk5CJOJQJ^JaJmH sH ,hThlkCJOJPJQJ^JaJmH sH &hThlk5CJOJQJ\^JaJ hThlkCJOJQJ^JaJ)hTh7B.5>*CJOJQJ\^JaJ hTh7B.CJOJQJ^JaJ(hTh7B.CJOJQJ^JaJmH sH #h;mh7B.6CJOJQJ^JaJ(hTh7B.CJOJQJ^JaJmH sH hibh7B.CJaJmH sH hThr5CJaJmH sH  3#4v4w466K:L:M:O:P:R::::::;=@$a$gdlk$a$gdib$a$gd;m $7$a$gdlk$a$gdlk 7$8$H$gdlk $1$7$8$H$a$gdyw d`gd7B.$dd[$\$a$gd;mQ:R:::::::AAAA"B#B$BϾudUE8Ehc5CJOJQJ\hchc5CJOJQJ\hchcB*CJ\ph h;m5CJOJQJ\^JaJ&hThlk5CJOJQJ\^JaJ(hThlkCJOJQJ^JaJmH sH #h;mh;m6CJOJQJ^JaJhlkCJOJQJ^JaJ hThlkCJOJQJ^JaJh;mCJOJQJ^JaJhibhlkCJaJmH sH %h;m5CJOJQJ^JaJmH sH @AAAA#B$BpBBB5CgCCCCCCEEGGJJ 7$8$H$gdc $7$8$H$a$gdc$a$gdc $a$gdc$a$gd;mgd7B.$a$gdlk$BBBCCWDXDDDE EdEeEoEpEEEEE$F%FzF{FFF"G#G(G)GGGGG7H8HHHHHHIIIIIIIWJXJ~JJJJKKL'L(L)L뿮 hTh7B.CJOJQJ^JaJ hD#h7B.0JCJKHOJQJhibh7B.CJ\aJhcCJOJQJ^JaJ#hchc6CJOJQJ^JaJhc hchcCJOJQJ^JaJ8JK(L)LMLxLyLQQQQ R R7RCRDRUYYY 7$8$H$gdyw $7$8$H$a$gd;m$a$gdib 7$8$H$gd=Ei 1$7$8$H$gdQgdcgd7B.$a$gd;m$a$gdc 7$8$H$gdc)L.LMLxLyLQQQQQQ R R7RCRUUUUXXXʹwfXF888hm0CJOJQJ^JaJ#h;mhyw6CJOJQJ^JaJh;mCJOJQJ^JaJ hD#hyw0JCJKHOJQJhibhywCJaJ)hQhyw5>*CJOJQJ\^JaJ hThywCJOJQJ^JaJ hchcCJOJQJ^JaJ hTh7B.CJOJQJ^JaJ&h;mh7B.6CJOJQJ]^JaJh;mCJOJQJ]^JaJ#hTh7B.CJOJQJ]^JaJX X\X]XYYYBZaZbZcZZZZZ'[([k[l[[[8\9\\\z^{^_V___ȷӷӷӷӷӷӷӷӷs_ThibhYmH sH &hD#hY5CJOJQJ\mH sH hibhYCJaJmH sH  hThTCJOJQJ^JaJ#h;mh=Ei6CJOJQJ^JaJ#h;mhT6CJOJQJ^JaJ hTh=EiCJOJQJ^JaJhibh=EiCJaJh;mCJOJQJ^JaJ hThywCJOJQJ^JaJhm0CJOJQJ^JaJYYY2ZBZbZcZ[___V_____``eeeee$a$gdY$a$gdY$a$gdD# $a$gdib 7$8$H$gd=Ei $7$8$H$a$gd;m$a$gdib___ ``DfEfFfffffPgQgԖxhTB.B&hTh6CJOJQJ]^JaJ#hThCJOJQJ]^JaJ&hThT5CJOJQJ\^JaJhD#h5CJOJQJ\hibhCJ\aJ"h;mCJOJQJ^JaJmH sH (hThYCJOJQJ^JaJmH sH +hThY6CJOJQJ^JaJmH sH %hT6CJOJQJ^JaJmH sH (hThYCJOJQJ^JaJmH sH +hThY5CJOJQJ^JaJmH sH  eef?f@fAfBfCfDfFfffffgPgQgijMmCnDnFn$a$gd 7$8$H$gd$a$gdD# $a$gdib $7$8$H$a$gdT$a$gdYQgEnFnnnnnoooaxbxcxxxνiTB7hibhCJaJ"h;mCJOJQJ^JaJmH sH (hThYCJOJQJ^JaJmH sH +hThY6CJOJQJ^JaJmH sH %hT6CJOJQJ^JaJmH sH (hThYCJOJQJ^JaJmH sH +hThY5CJOJQJ^JaJmH sH  hD#hYCJKHaJmH sH %h5fwhYB*CJaJmH phsH h;mCJOJQJ^JaJ hThCJOJQJ^JaJFnnnnnooo_xaxcxxxxXytyyy&|'|}}~~gd $a$gdib$a$gdT$a$gdY$a$gdY $a$gd5fwxxxxxxxxxxhyjytyuyy23qrs}ȶȶܕ܆zn[G&h%>h?N5CJKH\aJmH sH $h%>h?NCJKHOJQJmH sH h?NCJaJmH sH hCJaJmH sH hThCJaJmH sH #hThCJH*OJQJ^JaJhT6CJOJQJ^JaJ#hTh6CJOJQJ^JaJ&hTh6CJH*OJQJ^JaJ hThCJOJQJ^JaJ#hThTCJH*OJQJ^JaJ~2rs΂ghIJCF׌،ٌڌ a$dd[$\$a$gdT 7$8$H$gd%>gd%>gd?N $a$gdibgd}~΂ςBa֌׌،ٌڌی aνΙ~m[#hThyw6CJOJQJ^JaJ hThywCJOJQJ^JaJhibhywCJaJmH sH h%>CJaJmH sH h?Nh?NmH sH h?Nh%>mH sH h%>CJOJQJ^JaJ h7 h%>CJOJQJ^JaJh?NmH sH &h%>h?N5CJKH\aJmH sH )h%>h?N5CJH*KH\aJmH sH ֍qr(;<=QR^`pv̻~hUhUhUh~97jh~c6B*CJOJQJU^JaJmH phsH %h~c6CJOJQJ^JaJmH sH +hYHh~c6CJOJQJ^JaJmH sH 4hYHh~c6B*CJOJQJ^JaJmH phsH hYHh~c5CJ\o(hYHh~c5CJ\h~c5CJ\!hYHh~c5CJOJQJ\o(h;mCJOJQJ^JaJ hThywCJOJQJ^JaJ(hThywCJOJQJ^JaJmH sH JKopr;vCD JWD`Jgd~cgd~c $*$3$a$gd~c$a$gd~c$a$gd~c$a$gdTgdyw d`gdywʓI諏w\P;* hYZh~cCJOJQJ^JaJ(hYZh~cCJOJQJ^JaJmH sH hI h~cmH o(sH 4hYHh~c6B*CJOJQJ^JaJmH phsH /hu=h~c0J6CJOJQJ^JaJmH sH 7jh~c6B*CJOJQJU^JaJmH phsH Cj0hu=h~c6B*CJOJQJU^JaJmH phsH 4hYZh~c6B*CJOJQJ^JaJmH phsH .h~c6B*CJOJQJ^JaJmH phsH  IKNPVXܛ $vxyźzeLz>h;mCJOJQJ^JaJ0hTh7B.CJOJQJ^JaJmH nHsH tH(hTh7B.CJOJQJ^JaJnHtH hTh7B.CJOJQJ^JaJhT6CJOJQJ^JaJ#hTh7B.6CJOJQJ^JaJhTCJOJQJ^JaJhibh7B.CJaJh~ch~cCJaJhTh~cCJaJ hYZh~cCJOJQJ^JaJ#hYZh~cCJH*OJQJ^JaJܛݛ vwy:;HI$a$gdTgdyw8$H$gd7B.gd7B.$a$gdT $a$gdibgd~cy:HIUZ[֝tcVB1 hThYCJOJQJ^JaJ&hThT5CJOJQJ\^JaJhD#hYCJKHaJ hibhYB*CJ\aJph%h;m5CJOJQJ^JaJmH sH +hThyw5CJOJQJ^JaJmH sH )hTh7B.B*CJOJQJ^JaJph#hThyw5CJOJQJ^JaJ#hThyw6CJOJQJ^JaJ hThywCJOJQJ^JaJhTCJOJQJ^JaJhibhywCJaJIUZ[ӦԦCݫ+,_$a$gdTgd=Ei 7$8$H$gdY $a$gdib $7$8$H$a$gdT $7$8$H$a$gd7B.gdywgdywӦݫޫ߫+_6g~2\ɶuddddN51hTh=EiB*CJOJQJ^JaJmH phsH +hTh=EiCJOJQJ\^JaJmH sH  hTh=EiCJOJQJ^JaJ+hThT6CJOJQJ^JaJmH sH +hTh=Ei6CJOJQJ^JaJmH sH (hTh=EiCJOJQJ^JaJmH sH %hibh=EiB*CJaJmH phsH h;mCJaJhThYCJaJ hThYCJOJQJ^JaJ#hThY6CJOJQJ^JaJGŷV01eM $`a$gd=Ei$a$gdT $a$gdib L^`Lgd=Eigd=EiĶ<V¹ /0eîîà|mWDW%hT6CJOJQJ^JaJmH sH +hTh=Ei6CJOJQJ^JaJmH sH hibh=EiB*CJaJph$hD#h=Ei0JCJKHOJPJQJ!hibh=EiB*CJPJaJphh?NB*CJPJaJph(hTh=EiCJOJQJ^JaJmH sH hTh=EiCJOJQJ^JaJ(hTh=EiCJOJQJ^JaJmH sH +hTh=Ei5CJOJQJ^JaJmH sH tfS@0hD#hY5CJOJQJ\%hibhYB*CJaJmH phsH %h;m5CJOJQJ^JaJmH sH h;mCJOJQJ^JaJ hThywCJOJQJ^JaJ hTh=EiCJOJQJ^JaJ)hTh=EiB*CJOJQJ^JaJph(hTh=EiCJOJQJ^JaJmH sH +hTh=Ei5CJOJQJ^JaJmH sH )hTh=EiB*CJOJQJ^JaJph'hTh=Ei>*CJOJPJQJ^JaJ #14AEFH$a$gdYgdTgdY$a$gdD# $a$gdib$a$gdY $7$8$H$a$gdT L^`Lgd=Ei#14ADEFHIJ]_ǮǙǮǙǮǙ|kYkGkG#hThywCJH*OJQJ^JaJ#hThyw6CJOJQJ^JaJ hThywCJOJQJ^JaJhibhywB*CJaJphh;mCJOJQJ^JaJ(hThYCJOJQJ^JaJmH sH 0hThYCJOJQJ^JaJmH nH sH tH +hThY5CJOJQJ^JaJmH sH #hThY5CJOJQJ^JaJ hThYCJOJQJ^JaJHJKxxsnf$a$gdibgdgdyw; b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$gdyw $a$gdib>$ b L0 | `D( t"$ 'X)+-<024 7l9;>P@BD4GI7$8$H$a$gdyw LпqbSE3#hTh6CJOJQJ^JaJhTCJOJQJ^JaJhibhB*CJaJphh;m5CJOJQJ^JaJ#hTh5CJOJQJ^JaJ+hTh6CJOJQJ^JaJmH sH  hThCJOJQJ^JaJ(hThCJOJQJ^JaJmH sH  hD#h0JCJKHOJQJ%hibhB*CJaJmH phsH hTh5CJaJ hThywCJOJQJ^JaJKL}~ 5-$If $IfgdYH$a$gd=Eigdyw $*$a$gd $a$gdib $da$gd$a$gdgd$a$gdib 6e56pq ͻ͉͞~qmemem^m^m^mVmhYHB*ph hYH6]hYHCJaJhYHhYH5CJOJQJ\hTh=EiCJaJ(hThCJOJQJ^JaJmH sH 9hThB*CJOJQJ^JaJmH nH phsH tH #hThCJH*OJQJ^JaJ hThCJOJQJ^JaJ#hTh6CJOJQJ^JaJhT6CJOJQJ^JaJ 56STWpqvSWkdj$$If0P 62234aytYH$If$IfgdYHgdYH;kd$$If 634aytYH ?@AFm:iTdd$If[$\$^T`gdW$IfWkd$$If0P 62234aytYH$IfTdd$If[$\$^T`gdYH +>?@A_lmx~9:EK}$/<=?@A_tu u5EFGHIοοοοοοڴڭǭǭǭǭ h*p<6]h*p< hW6]hWB*ph hYH6]hWhYHCJaJhYHhYHB*phhYH5B*\phhYH56B*\]phD$=>?@AFuiTdd$If[$\$^T`gd*p<$IfWkdl$$If0P 62234aytYH$IfTdd$If[$\$^T`gdYH F3iQTdd$If[$\$^T`gdWTdd$If[$\$^T`gd*p<Tdd$If[$\$^T`gdYH$If$IfWkd$$If0P 62234aytYH IJMNOPQ 34567:;<=>hikmnohYHCJaJ h?z6] hj~6]hW hW6]hWB*phh*p<B*phh*p<5B*\phh*p<56B*\]phhYHB*phhYH hYH6] h*p<6]=3hiklmn:Nkd$$If0P 634aytYH$IfWkdn$$If0P 62234aytYHTdd$If[$\$^T`gdYHnopqrstuvwxyz{|}$IfNkd^$$If0P 634aytYH$Ifow|} +,7*+6GRefglm} %&'2CN[\]^Ǽݦݦݦ䦭Ǽձݦݦh*p<B*phh*p< h06]h0h0h0B*phhYH5B*\phhYH56B*\]phhYHB*ph hYH6]hYHhYHCJaJh*p<CJaJhj~CJaJ<,+GfiTdd$If[$\$^T`gd0Tdd$If[$\$^T`gdYH$If$IfWkd$$If0P 62234aytYHfglm'C\]xx`x``Tdd$If[$\$^T`gd0Tdd$If[$\$^T`gdYH$If $Ifgd0$IfWkdN$$If0P 62234aytYH ]^c%FGTdd$If[$\$^T`gdYH$If$IfWkd$$If0P 62234aytYH %(),-./0EFGHVWXYZ_`aCZ[\]^_defwz{ѸhYHCJaJhYH5B*\phh*p<56B*\]phhYH56B*\]ph h*p<6]hYHB*phhYH hYH6] h06]EGHMV[wiTdd$If[$\$^T`gd0Tdd$If[$\$^T`gdYH$If$IfWkdP$$If0P 62234aytYH{%&1DEP"#ST~v_,h nh n>*B*CJOJQJ^JaJph5jh nh n>*B*CJOJQJU^JaJphh nh nCJaJ h nh nCJOJQJ^JaJh*p<h]hrhYHB*phhYH5B*\phhYH56B*\]phhzS hzS6]h?zCJaJhYHCJaJhYH hYH6]%RNkdR$$If0P 634aytYH$IfWkd$$If0P 62234aytYHJWkd0$$If0P 62234aytYH$If$IfNkd$$If0P 634aytYH&E}xxxxxxgdYHWkd$$If0P 62234aytYH $IfgdYH $IfgdYHTdd$If[$\$^T`gdYH  gykd2$$IflF0'''' g*6    44 lapyt $Ifgd n $If^` gd ngdYH !"#4LSekd$$Ifl\0'' ' '' g*644 lap(yt $Ifgd n~FGH]^_`Ʊƚ~ƚ`Ʊƚ~ƚBƱƚ;jhxqhxq>*B*CJOJQJU^JaJph;j`hxqhxq>*B*CJOJQJU^JaJph h nh nCJOJQJ^JaJh nh nCJaJ,h nh n>*B*CJOJQJ^JaJph(h nh n>*B*CJOJQJ^Jph5jh nh n>*B*CJOJQJU^JaJph;jhxqhxq>*B*CJOJQJU^JaJphneeee $Ifgd nkd$$Ifl\0'' ' '' g*644 lap(yt_neeee $Ifgd nkd-$$Ifl\0'' ' '' g*644 lap(yt_`neeee $Ifgdkd$$Ifl\0'' ' '' g*644 lap(yt`HIJ_`abڶƫhJ5hh(h nh>*B*CJOJQJ^Jph;j{hxqh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph5jh nh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJh0JCJOJQJ^JaJ&h>*B*CJOJQJ^JaJph/jh>*B*CJOJQJU^JaJphhCJOJQJ^JaJaneeee $Ifgd nkd$$Ifl\0'' ' '' g*644 lap(ytaboxneeee $Ifgd nkd>$$Ifl\0'' ' '' g*644 lap(yt <=>RSTUituƱƚ~p~p~ƚRƱƚ~D~D~D~hCJOJQJ^JaJ;j!hxqh>*B*CJOJQJU^JaJphhbtCJOJQJ^JaJ h nhCJOJQJ^JaJh nhCJaJ,h nh>*B*CJOJQJ^JaJph(h nh>*B*CJOJQJ^Jph5jh nh>*B*CJOJQJU^JaJph;j hxqh>*B*CJOJQJU^JaJph Tneeee $Ifgd nkd $$Ifl\0'' ' '' g*644 lap(ytTUhneeee $Ifgd nkdz"$$Ifl\0'' ' '' g*644 lap(yt&'()OPvwxͯ͏~`͏~B;j&hxqh>*B*CJOJQJU^JaJph;j$hxqh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJ(h nh>*B*CJOJQJ^Jph;jS#hxqh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph5jh nh>*B*CJOJQJU^JaJph(neeee $Ifgd nkd$$$Ifl\0'' ' '' g*644 lap(yt()9KOneeee $Ifgd nkd%$$Ifl\0'' ' '' g*644 lap(ytneeee $Ifgd nkd:'$$Ifl\0'' ' '' g*644 lap(yt #$K}lU:U5jh nh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph h3 hHx0JCJOJQJ^J7j(h3 hHx>*B*CJOJQJU^Jph(h nhHx>*B*CJOJQJ^Jph"hHx>*B*CJOJQJ^Jph+jhHx>*B*CJOJQJU^JphhHxCJOJQJ^JaJ h nhCJOJQJ^JaJh nhCJaJ#aneeee $Ifgd nkd)$$Ifl\0'' ' '' g*644 lap(ytKLM_`abl}&Ʊƚ~p~ƚRƱƚ~ƚ;ju+hxqh>*B*CJOJQJU^JaJphh ACJOJQJ^JaJ h nhCJOJQJ^JaJh nhCJaJ,h nh>*B*CJOJQJ^JaJph(h nh>*B*CJOJQJ^Jph5jh nh>*B*CJOJQJU^JaJph;j)hxqh>*B*CJOJQJU^JaJphab~neeee $Ifgd nkd*$$Ifl\0'' ' '' g*644 lap(yt:neeee $Ifgd nkd4,$$Ifl\0'' ' '' g*644 lap(yt&'(89:;no()*+^Ʊƚ~ƚ`Ʊƚ~ƚBƱƚ~;j;0hxqh>*B*CJOJQJU^JaJph;j.hxqh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJ,h nh>*B*CJOJQJ^JaJph(h nh>*B*CJOJQJ^Jph5jh nh>*B*CJOJQJU^JaJph;j -hxqh>*B*CJOJQJU^JaJph:;Jfnneeee $Ifgd nkd-$$Ifl\0'' ' '' g*644 lap(yt*neeee $Ifgd nkdb/$$Ifl\0'' ' '' g*644 lap(yt*+:V^neeee $Ifgd nkd0$$Ifl\0'' ' '' g*644 lap(yt^_ 234GHIJopͯ͏~p~͏~R͏~;jL4hxqh>*B*CJOJQJU^JaJphhCJOJQJ^JaJ h nhCJOJQJ^JaJh nhCJaJ(h nh>*B*CJOJQJ^Jph;j1hxqh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph5jh nh>*B*CJOJQJU^JaJphneeee $Ifgd nkd2$$Ifl\0'' ' '' g*644 lap(yt Ineeee $Ifgd nkds3$$Ifl\0'' ' '' g*644 lap(ytIJWioneeee $Ifgd nkd 5$$Ifl\0'' ' '' g*644 lap(yt>?mnoƱƚ~ƚ`Ʊƚ~ƚBƱƚ~;j9hxqh>*B*CJOJQJU^JaJph;jv7hxqh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJ,h nh>*B*CJOJQJ^JaJph(h nh>*B*CJOJQJ^Jph5jh nh>*B*CJOJQJU^JaJph;j5hxqh>*B*CJOJQJU^JaJphneeee $Ifgd nkd6$$Ifl\0'' ' '' g*644 lap(yt"8>neeee $Ifgd nkd78$$Ifl\0'' ' '' g*644 lap(ytneeee $Ifgd nkd9$$Ifl\0'' ' '' g*644 lap(yt FGHYZ[\ͯ͏~`͏~B;j=hxqh>*B*CJOJQJU^JaJph;jN<hxqh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJ(h nh>*B*CJOJQJ^Jph;j:hxqh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph5jh nh>*B*CJOJQJU^JaJph [neeee $Ifgd nkdu;$$Ifl\0'' ' '' g*644 lap(yt[\lyneeee $Ifgd nkd =$$Ifl\0'' ' '' g*644 lap(yt;neeee $Ifgd nkd>$$Ifl\0'' ' '' g*644 lap(yt9:;<Eop#ɲɲqɲSɲqɲ;j(Ahxqh>*B*CJOJQJU^JaJphhCJOJQJ^JaJ(h nh>*B*CJOJQJ^Jph;jz?hxqh>*B*CJOJQJU^JaJph,h nh>*B*CJOJQJ^JaJph5jh nh>*B*CJOJQJU^JaJph h nhCJOJQJ^JaJh nhCJaJ;<Thoneeee $Ifgd nkdO@$$Ifl\0'' ' '' g*644 lap(ytCneeee $Ifgd nkdA$$Ifl\0'' ' '' g*644 lap(yt#$%ABCDOnoƱƚpZH3H(hHxhHx>*B*CJOJQJ^Jph"hHx>*B*CJOJQJ^Jph+jhHx>*B*CJOJQJU^Jph h nhHxCJOJQJ^JaJhHxCJOJQJ^JaJh nhCJaJ,h nh>*B*CJOJQJ^JaJph(h nh>*B*CJOJQJ^Jph5jh nh>*B*CJOJQJU^JaJph;jBhxqh>*B*CJOJQJU^JaJph CDOgnneeee $IfgdHxkdC$$Ifl\0'' ' '' g*644 lap(yt'ͼͥ{{{d{I5jh nhHx>*B*CJOJQJU^JaJph,h& hHx>*B*CJOJQJ^JaJph h nhHxCJOJQJ^JaJhHxCJOJQJ^JaJh nhHxCJaJ,h nhHx>*B*CJOJQJ^JaJph h3 hHx0JCJOJQJ^J+jhHx>*B*CJOJQJU^Jph7jdDh3 hHx>*B*CJOJQJU^Jphneeee $Ifgd nkdCE$$Ifl\0'' ' '' g*644 lap(yt;neeee $Ifgd nkdF$$Ifl\0'' ' '' g*644 lap(yt'()9:;<ef Ʊƚ~ƚ`Ʊƚ~R~ƚh ACJOJQJ^JaJ;jHhxqhHx>*B*CJOJQJU^JaJph h nhHxCJOJQJ^JaJh nhHxCJaJ,h nhHx>*B*CJOJQJ^JaJph(h nhHx>*B*CJOJQJ^Jph5jh nhHx>*B*CJOJQJU^JaJph;jFhxqhHx>*B*CJOJQJU^JaJph;<J^eneeee $Ifgd nkdG$$Ifl\0'' ' '' g*644 lap(yt!neeee $Ifgd nkdNI$$Ifl\0'' ' '' g*644 lap(yt  !"IJtuvƱƚ~ƚ`Ʊƚ~ƚBƱƚ~;jYMhxqhHx>*B*CJOJQJU^JaJph;jKhxqhHx>*B*CJOJQJU^JaJph h nhHxCJOJQJ^JaJh nhHxCJaJ,h nhHx>*B*CJOJQJ^JaJph(h nhHx>*B*CJOJQJ^Jph5jh nhHx>*B*CJOJQJU^JaJph;j'JhxqhHx>*B*CJOJQJU^JaJph!"/BIneeee $Ifgd nkdJ$$Ifl\0'' ' '' g*644 lap(ytneeee $Ifgd nkdL$$Ifl\0'' ' '' g*644 lap(yt Nneeee $Ifgd nkdN$$Ifl\0'' ' '' g*644 lap(yt=>?LMNOvwͯ͏~`͏~͏Y hYHhr;j{PhxqhHx>*B*CJOJQJU^JaJph h nhHxCJOJQJ^JaJh nhHxCJaJ(h nhHx>*B*CJOJQJ^Jph;jNhxqhHx>*B*CJOJQJU^JaJph,h nhHx>*B*CJOJQJ^JaJph5jh nhHx>*B*CJOJQJU^JaJphNO_pvneeee $Ifgd nkdO$$Ifl\0'' ' '' g*644 lap(ytneeee $Ifgd nkdTQ$$Ifl\0'' ' '' g*644 lap(ytnigd~ckd-R$$Ifl\0'' ' '' g*644 lap(yt,1h. A!"#$% DyK _Analysis_of_waveDyK _Present_and_futureDyK _Climate_driven_changeDyK _Wave_climate_andDyK _A_hybrid_systemDyK _Wave_climate_projectionsDyK _Dynamical_downscaling_ofDyK _Dynamical_downscaling_ofDyK _Simulated_wave_climatologyDyK _Two-way_Coupling_betweenDyK _A_strategy_forDyK _North_Sea_wave}DyK _130_years_ofDyK _Coordinated_global_waveDyK _Projected_future_waveDyK _Statistical_downscaling_ofDyK _Sung_Hyup_YouDyK _Regional_wave_climateDyK _Dynamic_Projection_ofDyK _On_the_relevanceDyK _Response_of_extremeDyK _The_influence_of{DyK  _Impact_of_aDyK  _Statistical_reconstruction_andDyK _Regional_wave_climate_DyK _The_wave_climateDyK krkang@kma.go.kryK Hmailto:krkang@kma.go.kryX;H,]ą'cY$$If!vh5 #v :V 6534ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYHm$$If!vh5_51#v_#v1:V 6,534ytYHm$$If!vh5_51#v_#v1:V 6,534ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYHm$$If!vh5_51#v_#v1:V 6,534ytYHm$$If!vh5_51#v_#v1:V 6,534ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh5_51#v_#v1:V 6,52234ytYH$$If!vh555 #v#v#v :V lg*6,555 9/ apyt$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:oyvind.breivik@met.noyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK \mailto:Fabrice.Ardhuin@ifremer.fryX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:jean.bidlot@ecmwf.intyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(yt$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:oyvind.breivik@met.noyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Xmailto:sofia.caires@deltares.nlyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Pmailto:jtcarvalho@gmail.comyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Nmailto:merce.casas@upc.eduyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Jmailto:e.charles@brgm.fryX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Jmailto:cheung@hawaii.eduyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK jens.debernard@met.noyK Rmailto:jens.debernard@met.noyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Lmailto:yalin.fan@noaa.govyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Nmailto:greg.flato@ec.gc.cayX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Hmailto:bfk@colorado.eduyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:iris.grabemann@hzg.deyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:nikolaus.groll@hzg.deyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:heinz.guenther@hzg.deyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(yt$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Nmailto:mark.hemer@csiro.auyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Hmailto:krkang@kma.go.kryX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Pmailto:amelie.laugel@edf.fryX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Zmailto:piero.lionello@pd.infn.ityX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Pmailto:amelie.laugel@edf.fryX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Jmailto:mendezf@unican.esyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Nmailto:menendezm@unican.esyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK dmailto:mori.nobuhito.8a@kyoto-u.ac.jpyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Hmailto:ocampo@cicese.mxyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK `mailto:william.perrie@dfo-mpo.gc.cayX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK lars.roed@met.noyK Hmailto:lars.roed@met.noyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(yt$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Hmailto:mnr@dhigroup.comyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Vmailto:alvaro.semedo@met.uu.seyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Lmailto:val.swail@ec.gc.cayX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Rmailto:xiaolan.wang@ec.gc.cayX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Lmailto:ralf.weisse@hzg.deyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK Bmailto:jaw@pol.ac.ukyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(ytDyK yK hmailto:yasuda.tomohiro.4x@kyoto-u.ac.jpyX;H,]ą'c$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(yt$$If!vh5 5 55 #v #v #v#v :V lg*6,5 5 55 9/ ap(yt @@@ NormalCJ_HaJmH sH tH Z@Z =Ei Heading 1$<@&5CJ KH OJQJ\^JaJ b@b  Heading 3$<@&&5CJOJQJ\^JaJmHsHtHDA@D Default Paragraph FontRi@R  Table Normal4 l4a (k(No ListXC@X =EiBody Text Indent `aJmH nHsH tHBB@B =Ei Body TextaJmH nHsH tH*W@* ywStrong5\bO"b ywDefault 7$8$H$-B*CJOJQJ^J_HaJmH phsH tH `O2` yw TextoNormal$7d`7a$B*aJmH phsH tH 6U@A6 ib Hyperlink >*B*phFV@QF 5fwFollowedHyperlink >*B* ph^Oa^ D# Default Char-B*CJOJQJ^J_HaJmH phsH tH B^@rB YH Normal (Web)dd[$\$JOJ rskype_pnh_print_container>O> rskype_pnh_container4O4 rskype_pnh_mark>O> rskype_pnh_left_spanDOD rskype_pnh_dropart_spanNON rskype_pnh_dropart_flag_span>O> rskype_pnh_text_span@O@ rskype_pnh_right_spane'f'v'''+g_papcppppXqtqqq&t'tuuvv2zrzszzzzzg|h|I~J~CFׄ؄لڄ aJKoprܓݓ vwy:;HIUZ[ӞԞCݣ+,_GůV01eMǺлѻ߻#14AEFHJKL}~ @0@0@0@0@0@000  ! p  V2v=<LMsuw)567QR  7 e f !!##%%&&'e'f'v'''++#,v,w,..K2L2M2O2P2R2222223589999#:$:p:::5;g;;;;;;==??BBC(D)DMDxDyDIIII J J7JCJDJMQQQQQ2RBRbRcRSWWWVWWWWWXX]]]]]]^?^@^A^B^C^D^F^^^^^_P_Q_abMeCfDfFfffffggg_papcppppXqtqqq&t'tuuvv2zrzszzzzzg|h|I~J~CFׄ؄لڄ aJKopr;vCDܓݓ vwy:;HIUZ[ӞԞCݣ+,_GůV01eMǺлѻ߻#14AEFHJKL}~ 56STWpqv ?@AFm:$=>?@AFuF3hiklmnopqrstuvwxyz{|},+Gfglm'C\]^c%FGHMV[w&E !"#4LS_`abox TUh()9KO#ab~:;Jfn*+:V^ IJWio"8> [\ly;<ThoCDOgn;<J^e!"/BI NO_pv000000000000000000 0 0 0 0 0 0 0 0 0 0  0  0  0  0  0 0 0 0 0 0 0 0 0 0 0 000000000000000000P0P0P0P0P0P0P0P0P0P0P0P0P0000000000000000&0&0&0&0&00n+0n+0n+0n+0n+0n+0n+0n+0n+0n+0n+00+20+20+20+20+20+20+20+20+20+200909090909090909090909090909090909090900C0C0C0C0C0C0C0C00{I0{I0{I0{I0{I0{I0{I0{I00Q0Q0Q0Q0Q0Q0Q0Q0Q00V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V00^0^0^0^0^0^0^0^0^0^0^0^000af0af0af0af0af0af0af0af00  p  V2v=sQR&''++#,v,w,..K2L2M2P23589B(D)DxDyDIIQWWW]^?^@^A^B^C^D^MeCfffggg_papXqtquvv2zJ~CFׄJKopܓ vw:HU+лѻ߻#14AEFH~ 56STWpqv ?@AFm:$=@AFuF3hiklmn|},+Gfgl'C]^c%FGHMV[w&E"#_`abTU()ab:;*+IJ[\;<CDOgn;<!"NO_pv00L000K00I0000/0000000000@0000000 00z00K00K000000H0 0)00 00 000(0{)@0(0x00H%@00000@00'0n($0'0m0'0k000070p0q0p0@000@00000d70000@000 00)00$0"0*#X?0"0)0"0'00$0H0bIT z00%00%@00$00"00 00??00K000P05Q0P040P0200@0@0@0@00\0=K00K00K000H04IK00K0000@0Z00Z00HZ00Z00Z00 @0000000@0 @0 @0000000@000 0&0't{000'00000 00 00 000000000S0 T00@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@000>00000000 (00000000Ԣ00Z0000 00 @0 00 00 00 00 @000 00 00 00 00 00 00 @000 00 00 00 00 00 00 00 00 @000 00 00 00 00 00 0 0 0 0 00 000 0 00 0 0 0 0 0 @00 0 0 0 @000 00 @000 00  <000 00 00 00 00 00 00 @ 000 00 00 00 00 00 00 @U00 00 00 00 00 00 00 00 @0e000000000000000000@0c000000@?2000000@0000000"P`=M0 000 000 000 000 000 00 00 0 00000@00x FL6M\x00NGU7tu00{I9 ? @ 00 LS=T d00Q000P 00O 000 00 0  0G00 0I00|@U5 0 00@p000@0000NGU7tu00J000@0 @000@0000,@0@00 0!d@0x0"0#@00$0%@0@LF"0&0'P@"00(0)D0 0 0*0+@00 0,0-@0@00.0/@00001@0@L@00203@0B@00405(@0D@00607`@0F@00809@0H@00<0=]@0(011!2 (0011  011 00091091091@0091@00>0?(^@00@0A`^@00B0C^@00D0E^C10F0G_@00H0I0000H1Ip,00H1 0H1 0J0wG700H1Ip,00H1 0H1 0J0@0 00 n # PzSuM(3Q:$B)LX_Qgx}Iy Io{~`K&^#'  pL(3@JYeFn~IHK53nf]G _aT(a:*I[;C;!NsuDmp"jm9;js< > _  F  ! P n p  + HV{$2Rtv;=bSG]I_=R&Ow #L_'8n(^ 3Go>nGY9o$An(9e Iu>LvXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX8@0(  B S  ?- _Hlt283027016 _Hlt283027017 _Hlt289894080 _Hlt289894081 _Hlt287950382 _Hlt283025315 _Hlt283025316 _Hlt289894377 _Hlt289894325 _Hlt289693663 _Hlt287951188 _Hlt289690965 _Hlt289690966 _Hlt287950572 _Hlt287950934_Analysis_of_wave_Present_and_future_Climate_driven_change_A_hybrid_system_Wave_climate_projections_Dynamical_downscaling_of_Spatial_patterns_of_Simulated_wave_climatology_Two-way_Coupling_between_A_strategy_for_North_Sea_wave _130_years_of_Coordinated_global_wave_Statistical_downscaling_of_Exploring_uncertainty_in_Projected_future_wave_Regional_wave_climate_Sung_Hyup_You_Dynamic_Projection_of_On_the_relevance_Response_of_extreme_The_influence_of_Wave_climate_and _Impact_of_a_Statistical_reconstruction_and_Regional_wave_climate__The_wave_climate_Provisional_Annotated_Agenda _Hlt289643831 _Hlt289643840 ' ^ c c wR29IIQWF^Ffcp2z2z2zryݣJ6@@@@@@@@@ @ @ @ @ @@ !"#$%&'()*+@,@ ( _ d d wR29IIQWF^Ffcp2z2z2zryݣJ6$y=#z>#{D>#|>#}D=#~=#<#<#D<#<#;#;#D;#;#:#:#D:#:#9#9#9#D9#8#8#7#D7#6#D6#6#6#5#D5#5#4#4#D4#4#3#3#D3#3#2#2#D2#2#1#1#D1#1#0#0#TTTTTTÏďTŏƏǏȏTɏʏˏ̏T͏ΏϏTЏяTҏӏԏՏT֏׏؏ُTڏۏ܏ݏTޏߏT   <|<|<|<|<|<|<|<|< |   < |<|<|<|<| <!|"#$<%|&'<(|)*+<,|-./<0|123<4|567<8|9:;<<|=>?<@|ABC<D|EFG<H|IJK<L|MNO<P|QRS<T|UVW< X| Y Z [>KKffVVii""088yyhhggJJ^^;;BB __epp      !"#$%&'()*+,-./0123456978:<;=>?@ABCDEFGHIJKLMNOPQRSTUVWYXZ[\]^_`abcdefghijklmnospqrtuvwxzy{|}~      !"#w044  O W ` d d j(++,",n,u,u,z-::e;e;;;;;==ADwDwDDLRXRaRaR[[ ^^^O^^^^^F_O_O__A`5bb7e>jjlqmp^qsqsqqqqq`z`zzzzzO`Aeuuhۓ"299žŞ˞ҞҞ-AA!dԥ[ŭnܰ""xڽ;DD  >lh**3RRDDNN""mm]]nn,77==~~nnmmQQddAAHHdoouu   !"#$%&'()*+,-./0123456897:<;=>?@ABCDEFGHIJKLMNOPQRSTUVWYXZ[\]^_`abcdefghijklmnoqrsptuvwxzy{|}~      !"# :*urn:schemas-microsoft-com:office:smarttagsStreet;*urn:schemas-microsoft-com:office:smarttagsaddress> *urn:schemas-microsoft-com:office:smarttags PersonName9*urn:schemas-microsoft-com:office:smarttagsState=!*urn:schemas-microsoft-com:office:smarttags PlaceType=#*urn:schemas-microsoft-com:office:smarttags PlaceName9$*urn:schemas-microsoft-com:office:smarttagsplaceB*urn:schemas-microsoft-com:office:smarttagscountry-region8*urn:schemas-microsoft-com:office:smarttagsCity?*urn:schemas-microsoft-com:office:smarttags stocktickerC*urn:schemas-microsoft-com:office:smarttagsmetricconverter>*urn:schemas-microsoft-com:office:smarttags PostalCode (I100 m 46,000 kmCristina IzaguirreFernando J. MendezIigo J. Losada Paula Camus ProductID Raul Medina$##!$$$$$$$$    $$$$$$$$$$!#$$$$$##!$$$$$$$$$$#$$$$$   $#$!$$$$$!#$$$$$$$$$$$#!$$$$$$$$$$$$$$$$$$$$$#!$$$$$$#!$#!#$! $$ $$$$$$$$$$$$$$$$ $$$$$$$!#$$$$$#!$$$$$$$$$$$$$$$$#!$ 'ELYb#-:EFQU^` e j t G L Q Z " . %-|SYbh mu $)12;ep07?H ' !!$"("##H$P$f'l'm't'/*9*+++++,//22222222x7777777788$:*:4:;:<:A:K:S:U:[:_:g:i:o:p:w:y::::::::::5;<;U;];;;;;;;;;==*>3>>>??BCCCCCuC|C}CCCC.D7DADGDHDLD JJJ"JJJLLMM#N*NVN^N_NeNjNpNNN=OCOwQQ RRR#RTT VVzVVWWWWWWWWW XXXZZZZ\\]]]]]]/^>^^^^^^^^^^^^^^^<_F_ffffffgg?iKitkkkkkk$l.lclol(m2moopp?pIpuu ~~QVZ`׈  $-56:Q^NZ'/V^ݓɕØʘИmq!15agؠ179>?BIPRY"2;PVɧ̧.4#)`f".¬ɬˬҬ8?LRƭѭ߭  '04do®ĮǮ׮ڮo|ۯ&<>sy,2u(6<>EMRSV]d׷߷MP]c&,5>ǺʺкֺHTػ޻߻(0;BCMҼ޼KRS]ֽڽ .;')127CJV]^hjpENiq 46RBIJSx~8>,8 :B-3 iqhnowUZ[`cghstEJgl@IT[\eDKLUJQ!07FLT`agDIJNCIR]") RclFM%%v''(())J6M6/8D89999::5;f;C'DFFHH2R5RRRSTVW[WWWYYX[[[^^aaMeYeffmm\ofocpppp`qcqqqzz x~Ԭ'(@AEGۭ$ů>FVݰ<ٹVj 46R3333333333333333333333333333333333333333333333333333333333)l4h ^`5hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.3)lb<        vEw'YEw'`6Ew'PEw'z7-E;T*fS=Ew'3qBxxBT*f5aGEw'(NkCREw'88]aEw'T*fBRh:o)hrEw'{Ew'65rW]azSD{ +7B.Ys.[&5F9*p< AjDYH?NQTA_ib~cOd=Ei`klk;m nxq5fwyw?zt~}Wrm0D#%>W0Yj~btu?& HxYZcB  56TWpqv@AF@AFhiklmn|}fgl]^cGHM !"#4LS_`abox TUh()9KO#ab~:;Jfn*+:V^ IJWio"8> [\ly;<ThoCDOgn;<J^e!"/BI NO_pv@5@UnknownGz Times New Roman5Symbol3& z ArialWSimSunArial Unicode MS3CMR127Century"qh'T'TW &$~$~!24dYY :qKP)?=Ei2HThe WCRP / JCOMM Workshop on Coordinared Global Wave Climate ProjectionsHemer, Mark (CMAR, Hobart)Hemer, Mark (CMAR, Hobart) Oh+'0$0<P t    LThe WCRP / JCOMM Workshop on Coordinared Global Wave Climate ProjectionsHemer, Mark (CMAR, Hobart) Normal.dotHemer, Mark (CMAR, Hobart)2Microsoft Office Word@G@"C@tI@tI$՜.+,D՜.+,D px  %CSIRO$~Y' IThe WCRP / JCOMM Workshop on Coordinared Global Wave Climate Projections Titlex 8@ _PID_HLINKSA0t;W(mailto:yasuda.tomohiro.4x@kyoto-u.ac.jp<Gmailto:jaw@pol.ac.uk4Jmailto:ralf.weisse@hzg.deNkmailto:xiaolan.wang@ec.gc.caqMmailto:val.swail@ec.gc.ca_amailto:alvaro.semedo@met.uu.se6mailto:mnr@dhigroup.comD.mailto:lars.roed@met.no2C$mailto:william.perrie@dfo-mpo.gc.cavXmailto:ocampo@cicese.mxB0&mailto:mori.nobuhito.8a@kyoto-u.ac.jp'mailto:menendezm@unican.eswBmailto:mendezf@unican.esX.mailto:amelie.laugel@edf.frLc!mailto:piero.lionello@pd.infn.itX.mailto:amelie.laugel@edf.fr} mailto:krkang@kma.go.kr3Imailto:mark.hemer@csiro.au{mailto:heinz.guenther@hzg.deQ?~mailto:nikolaus.groll@hzg.deL.{mailto:iris.grabemann@hzg.de8xmailto:bfk@colorado.edu|]umailto:greg.flato@ec.gc.ca$_rmailto:yalin.fan@noaa.govZ0omailto:jens.debernard@met.no 3lmailto:cheung@hawaii.edu"Cimailto:e.charles@brgm.fr}fmailto:merce.casas@upc.edu#cmailto:jtcarvalho@gmail.com G` mailto:sofia.caires@deltares.nlS-]mailto:oyvind.breivik@met.no]qZ)mailto:francois.bocquet@metoffice.gov.uk<EWmailto:jean.bidlot@ecmwf.intoT"mailto:Fabrice.Ardhuin@ifremer.frS-Qmailto:oyvind.breivik@met.no} Nmailto:krkang@kma.go.kr:K_The_wave_climatezNH_Regional_wave_climate_uTE _Statistical_reconstruction_and"B _Impact_of_a3?_The_influence_of5<_Response_of_extreme&9_On_the_relevanceb\6_Dynamic_Projection_ofzN3_Regional_wave_climate`G0_Sung_Hyup_YouD`-_Statistical_downscaling_ofzQ*_Projected_future_wave$'_Coordinated_global_wave{$_130_years_of@g!_North_Sea_waveoC_A_strategy_forY)_Two-way_Coupling_betweenwB_Simulated_wave_climatology/_Dynamical_downscaling_of/_Dynamical_downscaling_of4_Wave_climate_projections = _A_hybrid_system4 _Wave_climate_andzZ_Climate_driven_change^a_Present_and_future (_Analysis_of_wave  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry FPJData S1Table. WordDocument.SummaryInformation(DocumentSummaryInformation8CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q